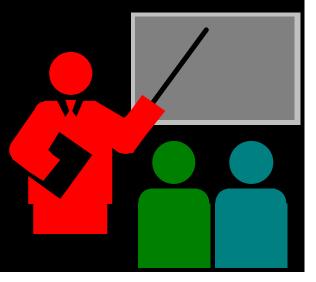
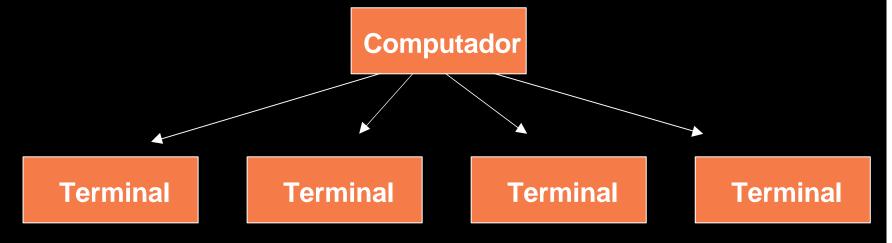
Tecnologia de Redes


Protocolo Ethernet

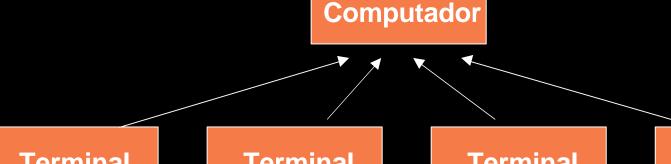
Volnys Borges Bernal volnys@lsi.usp.br
http://www.lsi.usp.br/~volnys

Agenda

- □ Protocolo Aloha
- □ Protocolo Ethernet
- □ Protocolo IEEE 802.x



- Protocolo de acesso ao meido desenvolvido para a "Rede Aloha"
- □ Rede Aloha
 - * Rede de radiodifusão via satélite que começou a operar em 1970
 - * Objetivo era interligar o computador do centro de computação da Universidade do Havaí aos terminais localizados na mesma ilha ou em outras ilhas



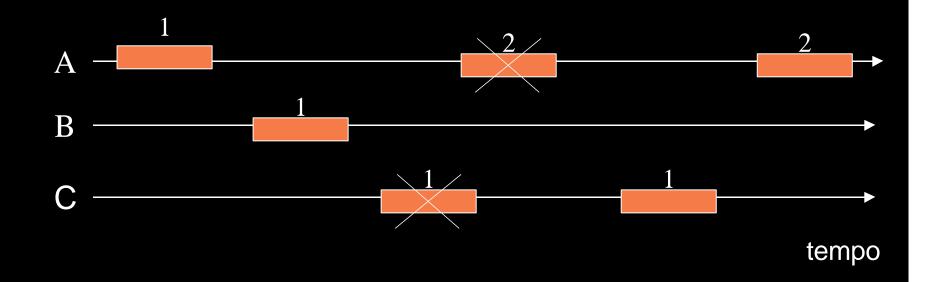
- □ Funcionamento
 - * Existem somente dois canais de comunicação
 - sum canal para transmissão do computador aos terminais
 - transmissores:
 - →somente o computador central possui transmissor
 - receptores
 - →cada terminal posui um receptor para este canal
 - ⇒um canal para transmissão dos terminais ao computador
 - transmissores:
 - →cada terminal possui um dispositivo transmissor para este canal
 - receptores
 - →somente o computador central possui um receptor

□ Canal de transmissão do computador para os terminais

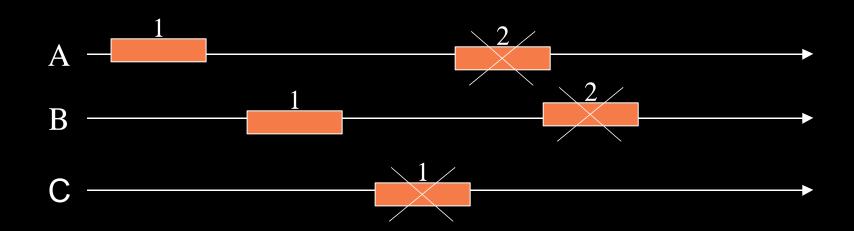
Canal de transmissão dos terminais para o computador

Terminal

Terminal


Terminal

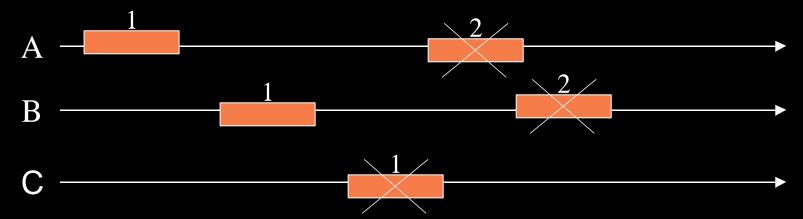
Terminal


- □ Topologia
 - * Topologia física: estrela
 - * Topologia lógica: barramento
- □ Problema:
 - * Colisão:
 - Dois ou mais terminais transmitindo ao mesmo tempo
 - * Necessário implementar um método de acesso ao meio

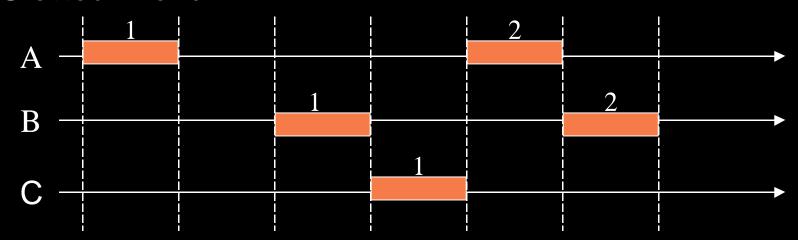
- Método de acesso ao meio
 - * Quando um terminal tem um quadro para transmitir ele o transmite, independente do cadal estar sendo utilizado ou não
 - * Após a transmissão é disparado um relógio temporizador, com tempo aleatório
 - * Se após este período não chega uma mensagem de "reconhecimento de transmissão" não chegar após o intervalo, este é transmitido novamente
 - * O receptor no centro de computação é capaz de detectar quando ocorre uma colisão pela verificação do CRC (Código de Redundância Cíclica)

□ Colisão e retransmissão

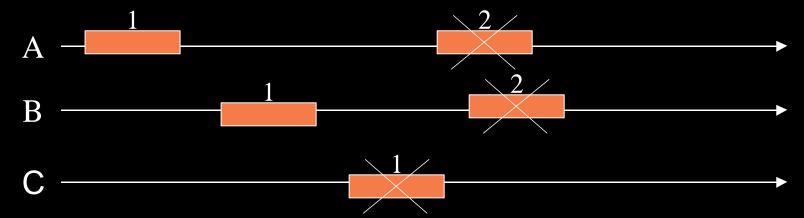
□ Colisão no protocolo aloha

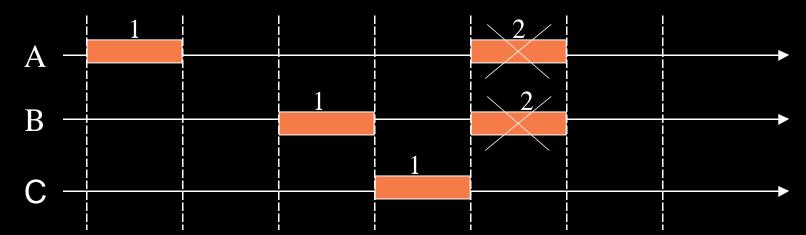


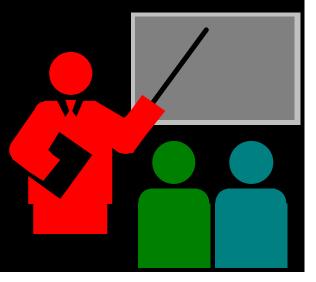
* Melhoria:


→O ideal seria que os quadros em colisão se sobreponham o máximo possível

Protocolo Slotted-Aloha


□ Aloha


□ Slotted-Aloha


□ Aloha

□ Slotted-Aloha

Protocolo Ethernet

□ Protocolo Ethernet

- * Protocolo padrão da Internet (pilha TCP/IP) para a camada intrarede em redes locais
- * Características
 - ⇒tipo de rede lógica: multiponto (barramento)
 - ⇒protocolo de acesso ao meio: CSMA/CD

* Objetivo:

Transferência de pacotes para máquinas que estão na mesma rede

* O termo "Ethernet"

- ⇒geralmente se refere ao padrão publicado em 1982 pela Digital e Xerox
- Existe um padrão similar definido pelo IEEE (será visto logo em seguida)

OSI

Aplicação

Aplicação

Apresentação

Sessão

Transporte

Rede

Enlace

Físico

meio físico

TCP/IP

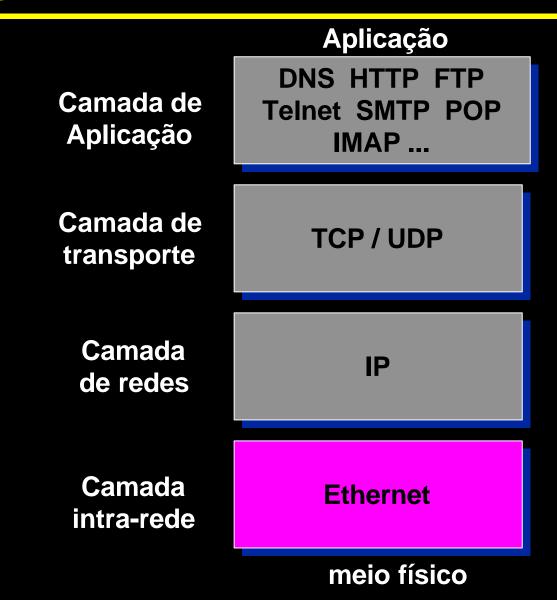
Aplicação

Aplicação

Transporte

Rede

Intra-rede

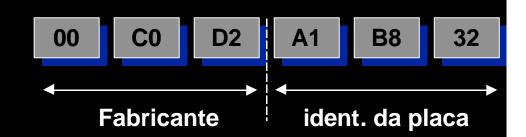

meio físico

FTP, DNS, Telnet, HTTP, SMTP, POP, IMAP, SNMP,

UDP, TCP

IP

Ethernet (barramento)
SLIP (ponto-a-ponto)
PPP (ponto-a-ponto)


□ Pacote Ethernet

- * O pacote Ethernet é responsável pela transmissão de dados entre máquinas de uma mesma rede local que se utiliza do protocolo Ethernet
- * Para um dado ser transmitido para outra máquina é necessário coloca-lo dentro de um pacote Ethernet
- * Pode-se fazer uma analogia entre o pacote Ethernet e um caminhão:
 - ⇒ Pacote ethernet: Caminhão
 - ⇒ Dado transportado: Container

□ Endereço Ethernet

- * Também chamado de
 - ⇒endereço físico
 - ⇔endereço de hardware
 - ⇔ou endereço MAC

* Composto por 6 bytes

- ⇒ Exemplo de endereço Ethernet: 00:C0:D2:A1:B8:32
- * O endereço Ethernet vem definico com a placa de rede
- * Cada placa de rede possui um endereço físico distinto
- * Endereços adotados pelos fabricantes é organizado pela IANA
 - ⇒IANA Internet Assigned Numbers Authority
 - ⇒http://www.iana.org
 - ◆ selecione link "Protocol Numbers and Assignment Services"
 - selecione link "Ethernet Numbers"
 - ◆ É apresentada uma lista parcial (a segunda) dos fabricantes

□ Para mostrar o endereço Ethernet no Windows

```
ipconfig -all
                          : angra.site.com.br
   Host Name
                         : 10.0.161.200
   DNS Servers
                            192.168.10.13
   Node Type
                        : Hybrid
   NetBIOS Scope IP
   IP Routing Enabled : No
   WINS Proxy Enabled : No
   NetBIOS Resolution Uses DNS: Yes
0 Ethernet Adapter:
   Description : DEC DC21140 PCI Fast Eth Adapter
   Phisical Address
                          : 00-60-67-30-D3-0D
   DHCP Enable
                          : No
   IP Address
                      : 10.0.161.50
                     : 255.255.254.0
   Subnet Mask
   Default Gateway : 10.0.161.254
   Primary WINS Server : 10.0.161.185
   Secondary WINS Server : 10.0.161.186
```

□ Para mostrar o endereço Ethernet no UNIX

```
/sbin/ifconfig -a
     Link encap:Local Loopback
10
      inet:127.0.0.1 Mask:255.0.0.0
      UP LOOPBACK RUNNING MULTICAST MTU:3924 Metric:1
      RXpackets:3205 errors:0 dropped:0 overruns:0 frame:0
      Txpackets:3205 errors:0 drppped:0 oversuns:0 carrier:0
      collisions:0 txqueuelen:0
     Link encap: Ethernet HWaddr 00:80:AD:1A:93:87
eth0
      inet:10.0.161.59 Bcast:10.0.161.255 Mask:255.255.254.0
      UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
      RXpackets:5823 errors:0 dropped:0 overruns:0 frame:259
      Txpackets:4606 errors:0 drppped:0 oversuns:0 carrier:0
      collisions:381 txqueuelen:100
      Interrupt:10 Base Address:0x340
```

Exercício

- (1) A respeito de endereços ethernet, responda:
 - (a)Descubra o endereço Ethernet de sua máquina
 - (b) Qual é o número do fabricante representado neste endereço Ethernet?
 - (c) A partir deste número, descubra o fabricante (utilize uma lista de números de fabricantes)
 - (d) Converta o endereço ethernet para o valor binário
 - (e) Qual o valor do oitavo bit do endereço Ethernet de seu computador?

□ Pacote Ethernet

* Endereço Destino

* Endereço Origem

* Tipo

* Dados

* CRC

: endereço Ethernet do destinatário

:endereço Ethernet do emissor

: tipo de dado sendo transmitido

: container de dados

: Código de Redundância Cíclica

64 a 1518 octetos

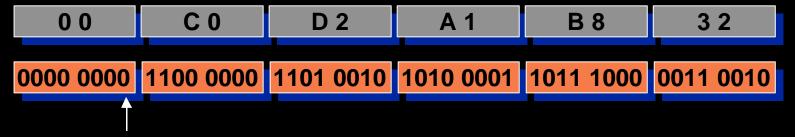
Patote Ethernet

* Campo "Tipo"

⇒ Define o tipo da informação que o pacote ethernet está transportando

⇒Alguns valores mais utilizados:

◆ IP v4 : 0800


◆ ARP : 0806

◆ RARP : 8035

Uma lista parcial dos valores possíveis está em:

- http://www.iana.org
 - → *link* "Protocol Numbers and Assignment Services"
 - → *link* "Ethernet Numbers"
 - →A primeira lista apresentada no documento é uma lista parcial dos possíveis valores deste campo

- □ Transmissão UNICAST
 - * Endereço Destino: Endereço Ethernet da máquina destino
 - Neste caso, oitavo bit do endereço ethernet destino sempre terá valor 0 (o oitavo bit é o primeiro bit a ser transmitido no fio!).
 - ⇒Exemplo:

- □ Trasmissão Broadcast
 - * Endereço Destino: FF-FF-FF-FF-FF
- □ Transmissão Multicast
 - * Endereço Destino: endereço multicast (um endereço ethernet com o oitavo bit do endereço ethernet destino = 1)

- - * Maximum Transmition Unit
 - * Unidade máxima de transmissão
- □ Fragmentação
 - * Quando o pacote a ser transmitido é maior do que o MTU o pacote deve ser fragmentado (dividido em várias partes)

Exercício

(1) Sejam dóis computadores (A e B) ligados a uma mesma rede local que utiliza o protocolo Ethernet

Computador A:

Nome: terra

Endereço IP: 10.0.0.1

Endereço Ethernet: 00:C0:24:A5:43:8B

Computador B:

Nome: marte

Endereço IP: 10.0.0.2

Endereço Ethernet: 00:C0:24:A5:48:55

Mostre como seria o formato do pacote Ethernet resultante de uma transmissão unicast de A para B. Suponha que o pacote Ethernet esteja carregando um pacote IP com 125 octetos.

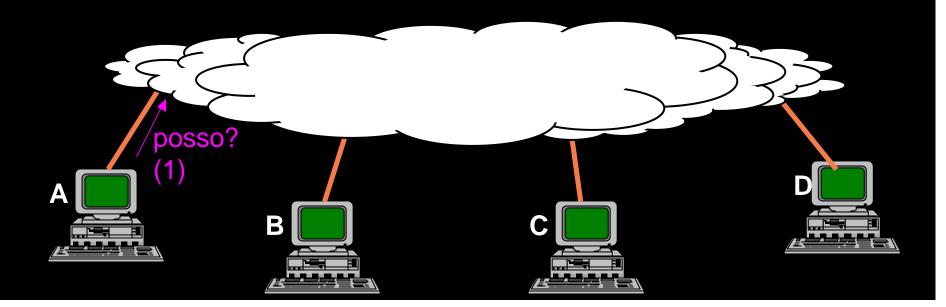
Exercício

(2) Seja um comptador A ligado a uma rede local que utiliza o protocolo Ethernet

Computador A:

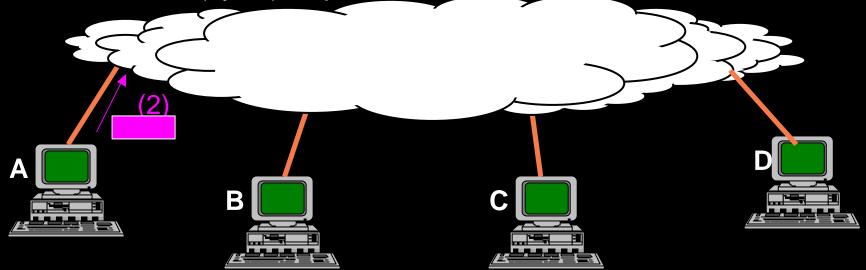
Nome: terra

Endereço IP: 10.0.0.1

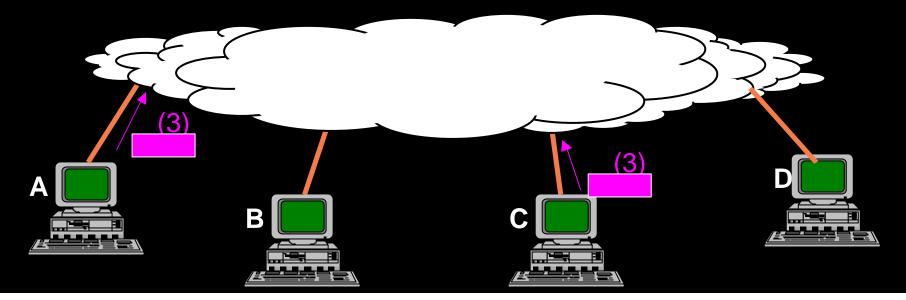

Endereço Ethernet: 00:C0:24:A5:43:8B

- Mostre como seria o formato do pacote Ethernet resultante de uma transmissão broadcast por A. Suponha que o pacote Ethernet esteja carregando um pacote ARP com 28 octetos.
- (3) Em um pacote Ethernet qual deve ser o valor do campo tipo se estiver sendo transportado um pacote IPv6 (IP versão 6)?
- (4) Qual o valor do parâmetro MTU associado à interface Ethernet de sua máquina?

- □ Método de acesso ao meio utilizado no Ethernet:
 - * CSMA/CD
 - Carrier Sense, Multiple Access with Colision Detection
 - ⇒ Carrier Sense
 - Antes de transmitir é verificado se o meio está disponível
 - Multiple Access
 - Vários equipamentos podem transmitir no mesmo meio (rede multiponto: barramento)
 - ⇒ Colition Detection
 - Durante a transmissão do pacote é verificado se ocorreu uma colisão


□ Funcionamento do CSMA/CD

- * (1) O equipamento A deseja transmitir um pacote
 - ⇒Se o meio estiver ocupado (existe algum pacote sendo transmitido), aguarda
 - ⇒Se o meio está disponível (não existe nenhum pacote sendo transmitido), transmite o pacote

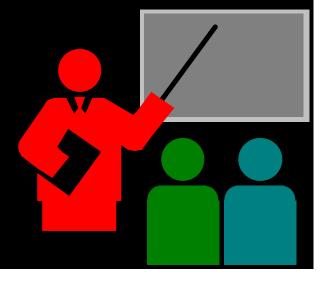

□ Funcionamento do CSMA/CD

- * (2) Durante a transmissão do pacote, verifica se não ocorreu colisão
 - A colisão ocorre quando dois ou mais equipamentos transmitem pacotes ao mesmo tempo, misturando o sinal
 - →O padrão define que a colisão, quando existir, deve obrigatóriamente ocorrer durante a transmissão dos primeiros 64 octetos (bytes) do pacote

□ Funcionamento do CSMA/CD

- * (3) Se ocorrer uma colisão
 - →o equipamento para imediatamente a transmissão do pacote e transmite um sinal especial (jam) indicando a ocorrência de colisão
 - ⇒aguarda um tempo aleatório
 - se o meio estiver disponível, tenta novamente transmitir

□ Colisão


* Detecção

- A colisão é detectada pela própria placa de rede através da comparação do sinal transmitido com o sinal recebido
- Se este sinal for diferente, a placa supõe que tenha ocorrido uma colisão
- ⇒Quando detectada uma colisão, a placa envia um sinal especial (jam) indicando às outras máquinas que ocorreu uma colisão

* Ocorrência

- Nas redes Ethernet sempre ocorrem colisões
- ⇒Porém, um numero excessivo de colisões pode indicar que o meio (barramento) possui:
 - quantidade muito grande de equipamentos interconectados
 - equipamentos com taxa de comunicação muito alta
 - ambas as anteriores

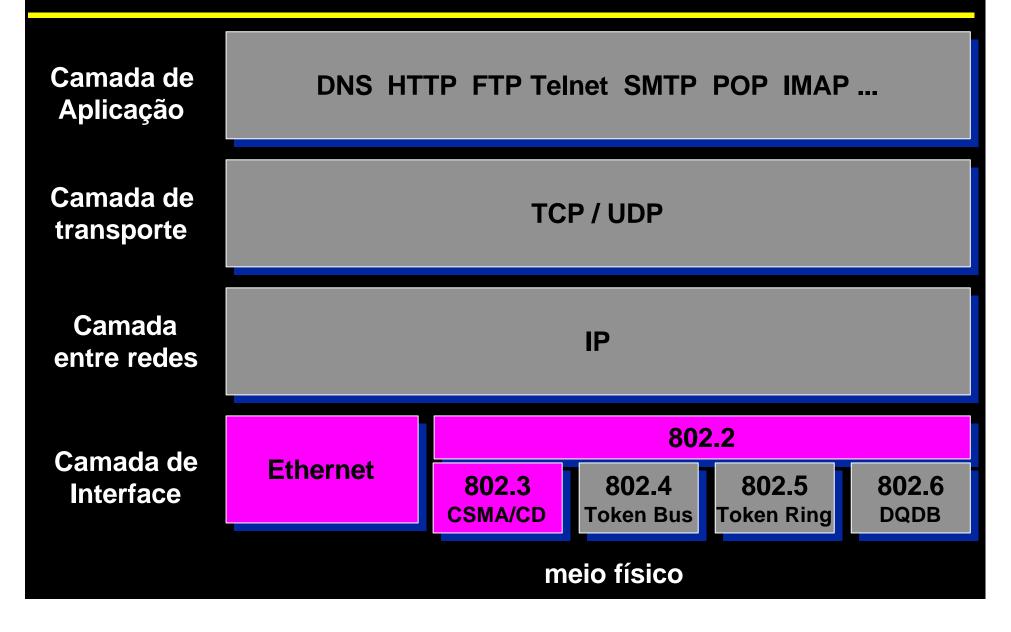
Protocolo IEEE 802.x

Protocolo IEEE 802.x

- □ Padrão 802
 - * Alguns anos após a definição do Ethernet o IEEE (Instituto dos Engenheiros Eletrônicos e Eletricistas) definiu o padrão IEEE 802.2, semelhante ao padrão Ethernet
 - * O IEEE 802 divide a camada inter-redes em tres sub-camadas:

```
⇒LLC - Logical Link Control
```

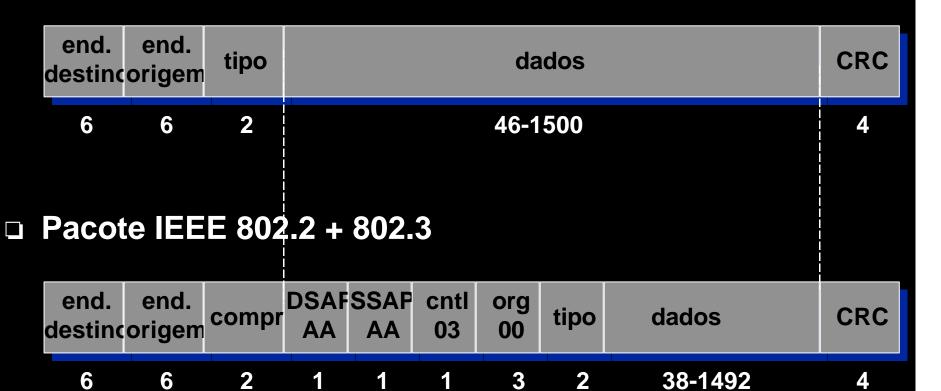
⇒MAC - Medium Access Control

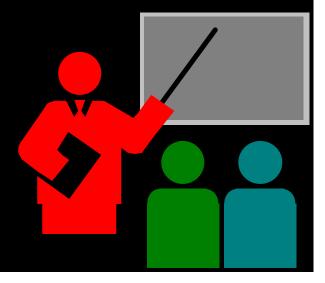

⇔Físico

* Assim, é possivel utilizar outros métodos de acesso ao meio, não necessariamente CSMA/CD:

⇒802.2 + 802.5 - token ring

* Ethernet: semelhante ao Protocolo IEEE 802.2 + IEEE 802.3


Ethernet & IEEE 802.x


Ethernet & 802.x

□ Pacote Ethernet

Ethernet e IEEE 802.3: Subcamada Física e Meio Físico

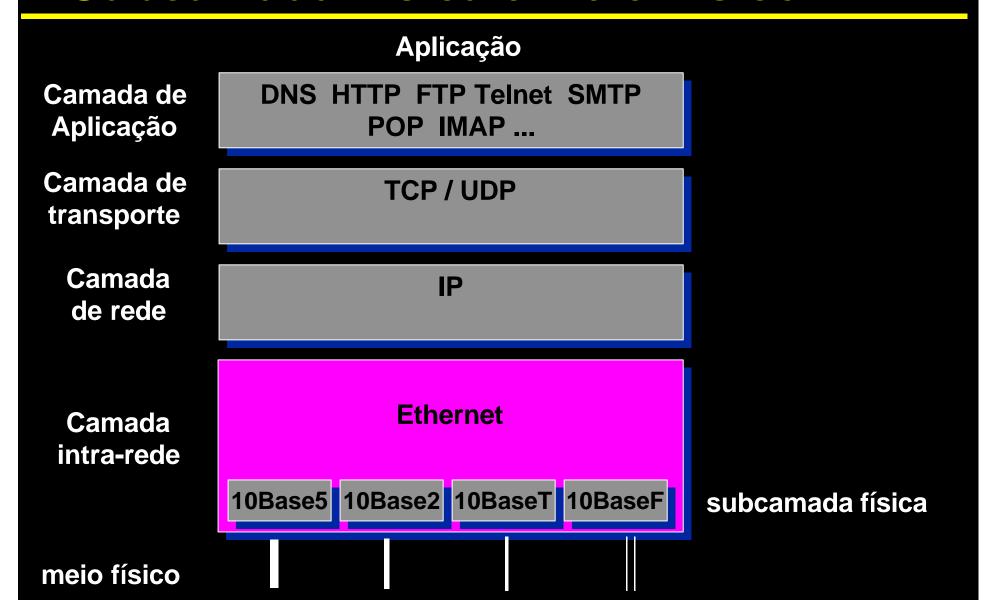
- □ Protocolo Ethernet e IEEE 802.3
 - * Suporta as seguintes subcamadas físicas:

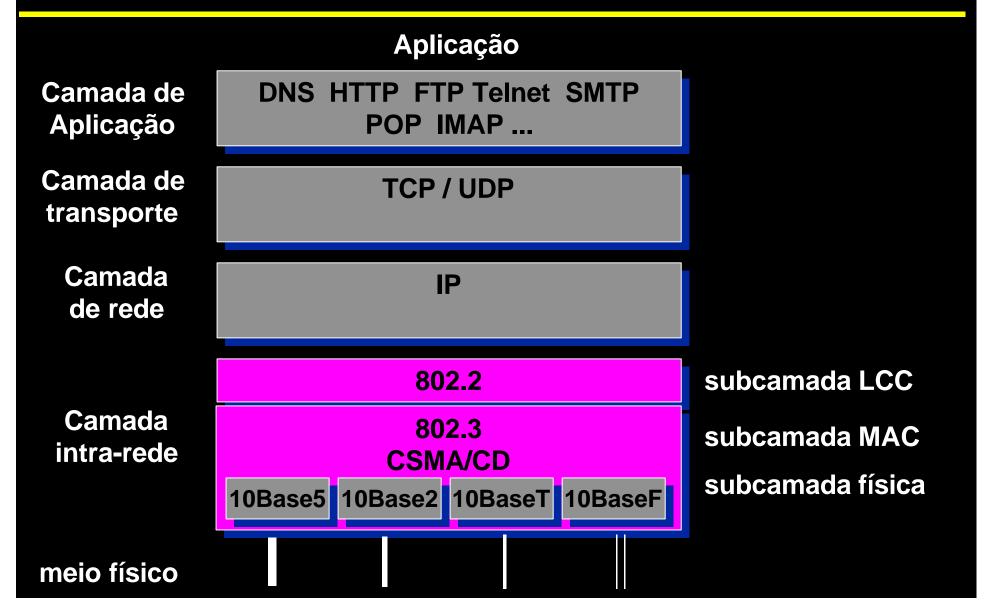
```
d⇒10Base5
```

d⇒10Base2

d⇒10BaseT

d⇒10BaseF


* Restrições: em relação ao comprimento do cabo


```
⇒10Base5 - 500 m
```

⇒10Base2 - 185 m

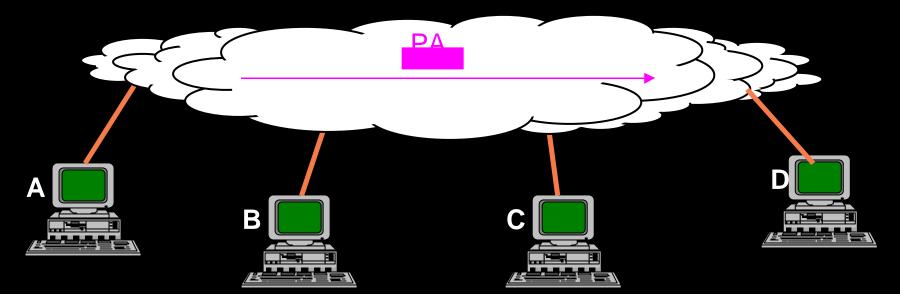
⇒10BaseT - 100 m

⇒10BaseF - 2000 m

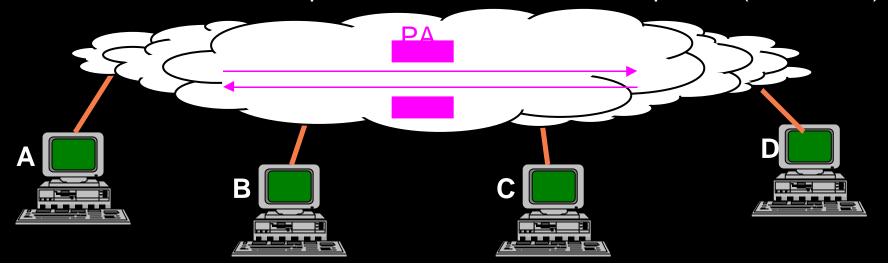
- □ Comprimento máximo do segmento
 - * Depende de:

⇒tempo de propagação do cabo

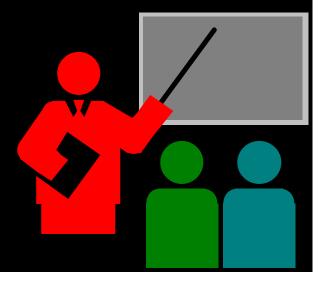
- ◆ tempo que o sinal leva para se propagar no cabo
- depende do meio físico utilizado (coaxial, UTP, fibra)


⇒tamanho mínimo do pacote Ethernet (64 bytes)

⇒velocidade de transferência (Ethernet = 10Mbps)


* Comprimento máximo do cabo:

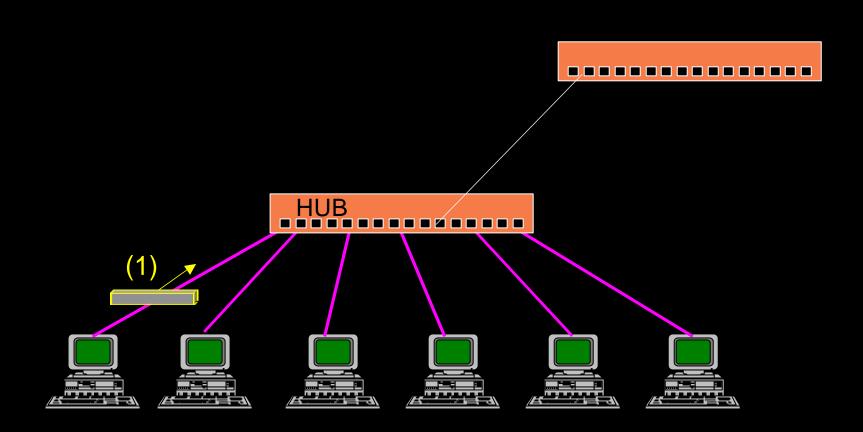
- ◆ Tt Tempo de transmissão do menor pacote (64 bytes)
- Tp Tempo de propagação do sinal entre dois pontos mais distantes (comprimento máximo) de um mesmo segmento de repetição

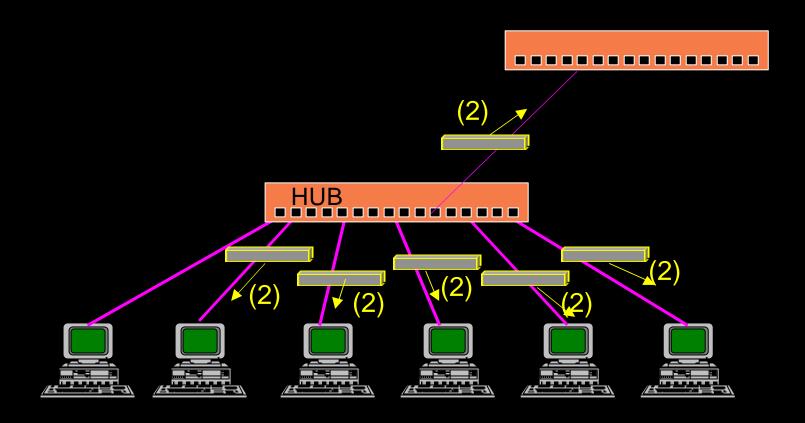

- Definição do comprimento máximo do segmento
 - * No pior caso ...
 - O equipamento A transmite o pacote PA
 - Imediatamente antes do pacote PA chegar ao equipamento D, o equipamento D transmite o pacote PD
 - →O equipamento D irá detectar a colisão assim que o pacote PA chegar a D (1 x Tp)

- □ Definição do comprimento máximo do segmento (cont.)
 - →O equipamento A irá detectar a colisão somente quando o pacote PD chegar a A (~ 2 x Tp)
 - → A colisão deve ocorrer antes de ser transmitido o último octeto (byte) do pacote PA, ou seja:
 - ◆ Tt >= 2 Tp
 - →Tp Tempo de propagação do sinal entre A e D
 - →Tt Tempo de transmissão do menor pacote (64 octetos)

Equipamentos para Ethernet

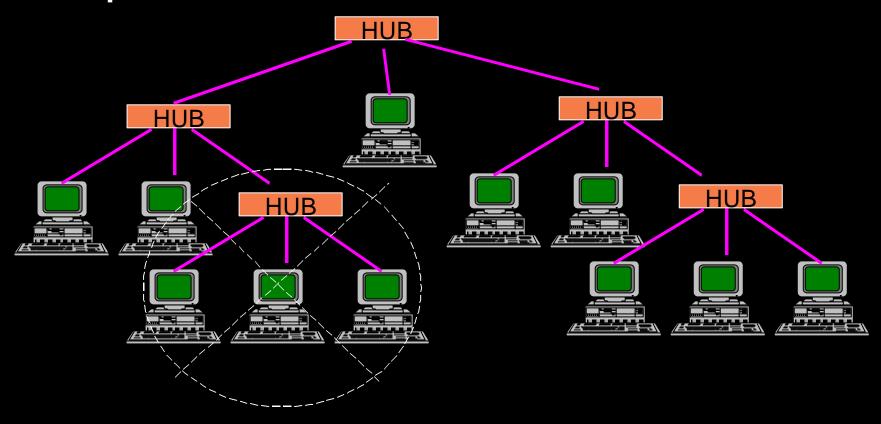
Equipamentos Ethernet

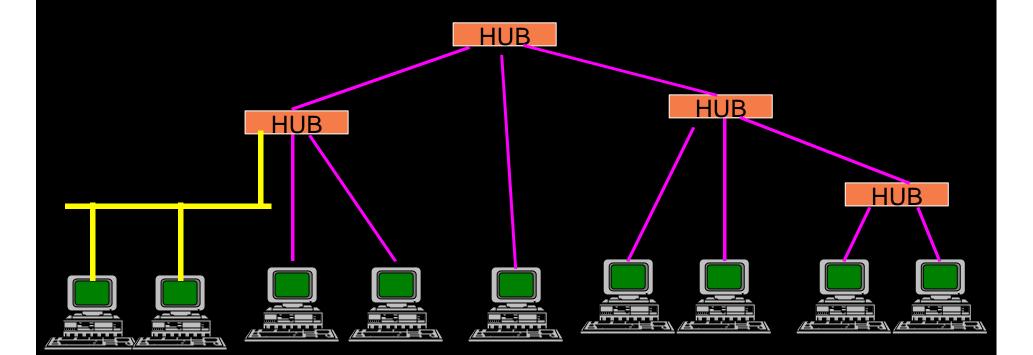

- Equipamentos
 - * Repetidor
 - * HUB
 - * Bridge
 - * Switch


Repetidor

- □ Todo sinal recebido por uma porta é repetido nas outras portas
- □ Restrições
 - * Estas restrições são estabelecidas devido ao problema da colisão ter que ser detectada antes da transmissão do octeto 64
 - * Restrições quanto ao número de repetidores em cascata:
 - ⇒Utilizando somente cabo coaxial (10Base2 ou 10Base5)
 - Máximo de 4 repetidores entre dois nós
 - →Sendo que 2 segmentos não pode ser povoado!

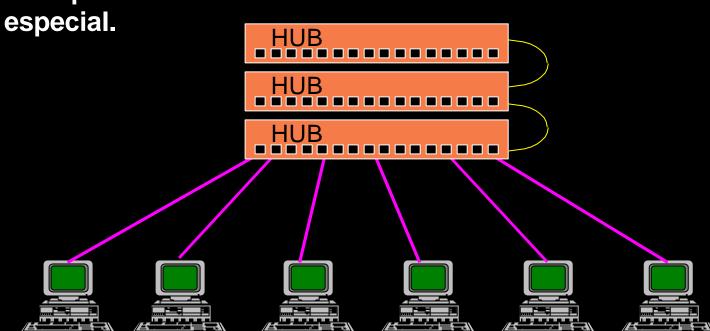
- □ O HUB é um repetidor para topologia física tipo estrela
 - * Para ser utilizado com cabeamento estruturado
 - * Utilizado junto aos concentradores de fiação (patch pannel)
- □ Funcionamento:
 - * Todo sinal recebido por uma porta é repetido nas outras portas



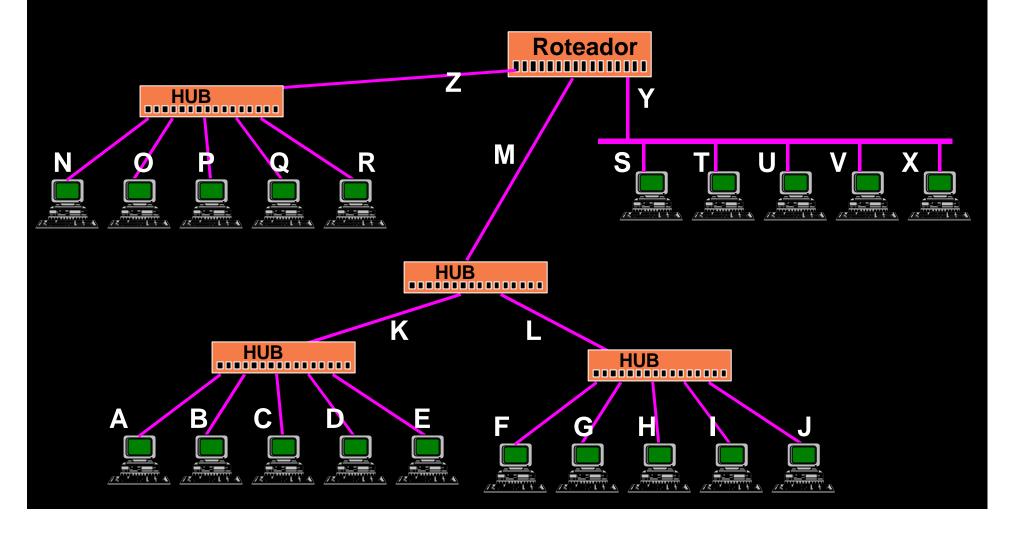


- □ Restrições
 - * Estas restrições são estabelecidas devido ao problema da colisão ter que ser detectada antes da transmissão do octeto 64
 - * Restrições quanto ao número de HUBs em cascata:
 - ➡ Máximo de 4 HUBs entre dois nós quaisquer
 - * Em sistemas híbridos (UTP e coaxial):
 - ⇒ Máximo de 4 repetidores (ou HUBs) entre dois nós quaisquer
 - Número máximo de 3 segmentos de cabo coaxial em um caminho

□ Exemplo

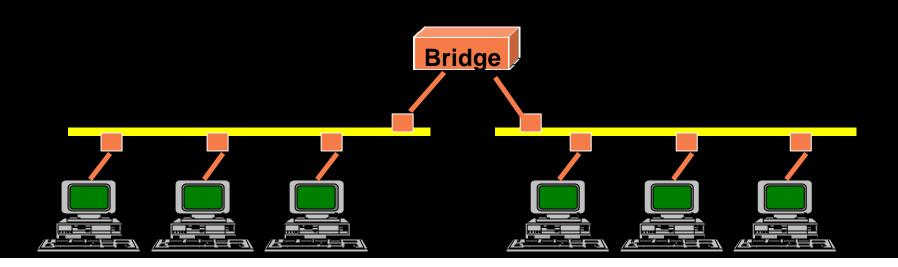


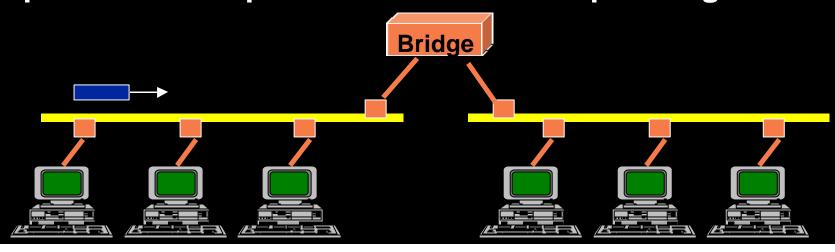
□ Exemplo


- Empilhamento
 - * Muitos HUBs permitem o empilhamento (stack)
 - * Forma de interligação de HUB na qual o conjunto é considerado como um único HUB para efeito de restrições de cascateamento

* O empilhamento é realizado através de uma interface e cabo

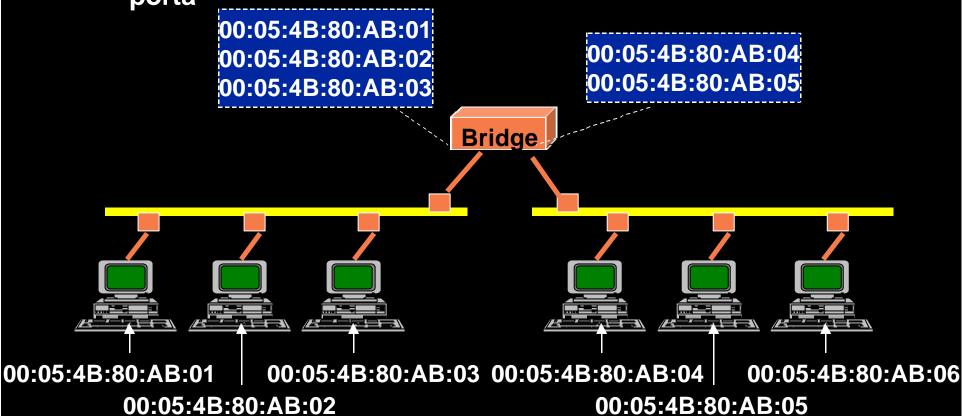
Exercícios


(1) Seja a seguinte configuração de rede:


Exercícios

- (a) Quantos domínios de broadcast (ou redes locais) estão definidos nesta configuração?
- (b) Suponha que a máquina A transmita um pacote ethernet unicast para B. Este pacote ethernet irá chegar a quais interfaces de rede?
- (c) Suponha que a máquina A transmita um pacote ethernet broadcast. Este pacote ethernet irá chegar a quais interfaces de rede?
- (d) Suponha que a máquina A transmita um pacote ethernet unicast para S. Este pacote ethernet irá chegar a quais interfaces de rede?
- (e) Suponha que a máquina A transmita um pacote ethernet broadcast para P. Este pacote ethernet irá chegar a quais interfaces de rede?

- □ "Ponte" entre redes
- Permite "juntar" duas redes locais (dois barramentos) formando uma única rede



- □ A bridge, ao invés do repetidor que sempre propaga um pacote para todas as interfaces, irá somente propagar um pacote para uma determinada interface quando for estritamente necessário.
- □ Existem algumas restrições relativas à utilização de múltiplas bridges em uma rede como o de não permitir ciclos. Caso existam "ciclos" é necessário utilizar um protocolo complementar chamado "spawning tree".

Funcionamento

* Para cada porta é mantido uma tabela (tabela de bridging) com os endereços Ethernet das interfaces que estão a partir desta porta

□ Funcionamento

- * A "Tabela de Bridging" é construída dinâmicamente:
 - ⇒Quando um pacote Ethernet é recebido por uma das portas, é obtido o endereço ethernet de origem do pacote (máquina que o enviou).
 - ⇒É verificado se este endereço já existe na tabela de bridging desta porta
 - ⇒Se não existir, este é inserido
- * Cada entrada possui um tempo limitado de vida.

□ Para um pacote unicast:

- * Quando chega um pacote Unicast em uma porta:

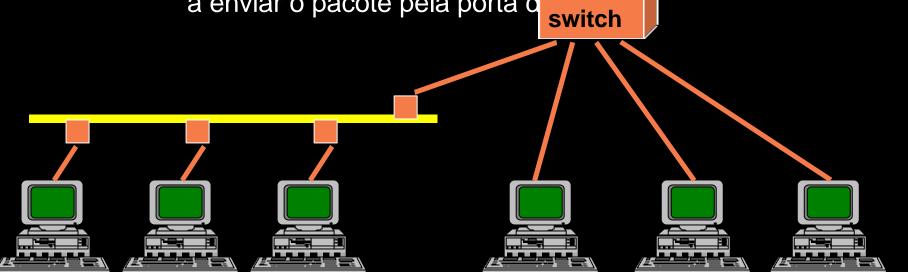
 - Se estiver na tabela da mesma porta, descarta o pacote
 - ⇒ Senão, consulta as tabelas de bridging das outras portas
 - ⇒Se achar uma porta cuja tabela de bridging tenha o endereço Ethernet do destinatário, transmite o pacote por esta porta
 - ⇒Se não achar em nenhuma porta, transmite para todas as portas

- □ Para um pacote Broadcast:
 - * Quando chega um pacote broadcast em uma porta
 - ⇒ Transmite para todas as portas

Switch

□ Switch

* Evolução da Bridge:


- d⇒várias portas
- ⇒ várias transmissões entre portas simultâneamente
- ⇒utilização de buffers (para enfileirar um pacotes quando a porta de destino está ocupada

* Formas de operação ⇔ Cut-throw (mais eficiênte) ⇔ Store and Forward

Switch

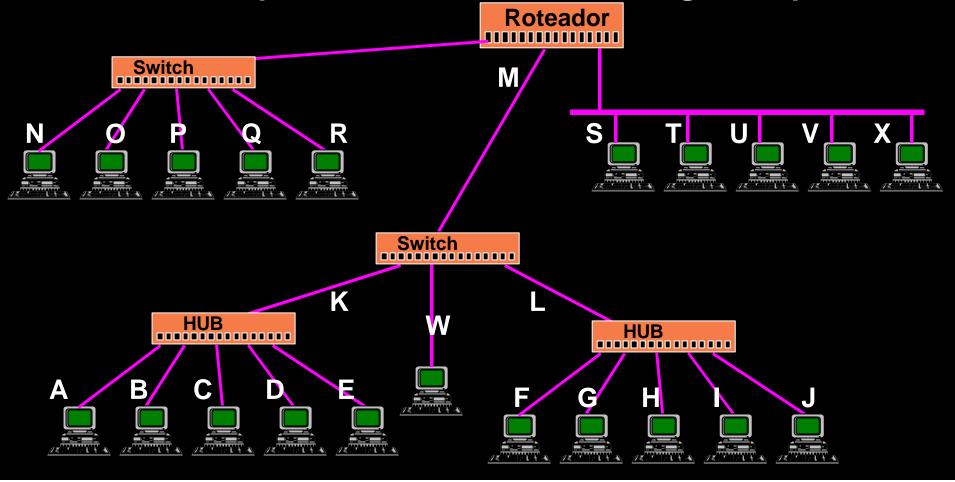
□ Switch

- * Formas de operação
 - ⇔Store and Forward
 - Armazena o pacote inteiro (store) para então envia-lo pela porta destino
 - ⇔Cut-throw (mais eficiênte)
 - ◆ Assim que o campo de destinatário é recebido pode começar a enviar o pacote pela porta de la composição de la

Bridge e Switch: Modos de operação

□ Modos de operação de Bridge / Switch

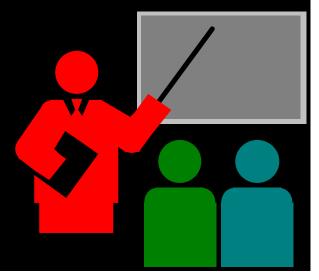
* Transparent Bridge


- Descobre automaticamente os equipamentos que estão abaixo de cada porta de bridge
- ⇒Para cada porta mantém uma tabela com endereços ethernet dos equipamentos que estão abaixo da porta
- Descoberta: Quando o primeiro pacote proveniente do equipamento é recebido por uma porta é verificado o endereço ethernet de origem

* Spawning Tree

⇒Protocolo que permite tratar conexões cíclicas, transformando em uma árvore

Exercícios


(2) Seja a seguinte configuração de rede e suponha que os switchs possuam sua tabela de bridge completas.

Exercícios

- (a) Suponha que a máquina A transmita um pacote ethernet unicast para B. Este pacote ethernet irá chegar a quais interfaces de rede?
- (b) Suponha que a máquina A transmita um pacote ethernet broadcast. Este pacote ethernet irá chegar a quais interfaces de rede?
- (c) Suponha que a máquina A transmita um pacote ethernet unicast para W. Este pacote ethernet irá chegar a quais interfaces de rede?
- (d) Suponha que a máquina A transmita um pacote ethernet unicast para F. Este pacote ethernet irá chegar a quais interfaces de rede?

Interface Loopback

Interface Loopback

- □ Interface "virtual"
- □ Utilizada quando é necessário contactar via protocolos de rede o próprio host

Exercícios

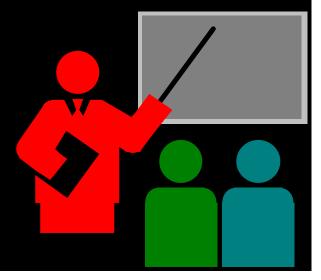
(1) Projete uma rede para uma empresa onde existem 2 prédios (A e B) separados por 400 m. Cada prédio possui 3 andares (A1,A2,A3, B1,B2,B3). Os computadores estão distribuídos da seguinte maneira:

```
A3 = 20 B3 = 5

A2 = 16 B2 = 28

A1 = 30 B1 = 40 (5 destes são servidores)
```

A medida de cada andar é 20 m x 50 m.


Uma linha LP externa chega ao andar B1.

- a) Seguindo a recomendação de cabeamento estruturado defina a tecnologia de cabeamento utilizada, a localização dos centros de distribuição e a localização da sala central de distribuição.
- b) Projete a rede utilizando somente HUBs de 24 portas

Exercícios

- (2) Nesta configuração, quantas máquinas podem transmitir ao mesmo tempo na rede local? Explique!
- (3) Projete a rede anterior utilizando HUBs de 24 portas e 1 switch de 12 portas.
- (4) No seu projeto é possível conectar os servidores diretamente ao switch?
- (5) Nesta configuração, quantas máquinas podem transmitir ao mesmo tempo na rede local? Explique!
- (6) Projete a rede anterior utilizando HUBs de 24 portas e 2 switchs de 12 portas

Bibliografia deste módulo

Bibliografia deste módulo

□ Livros

- * TCP/IP Illustraded Volume 1: The Protocols
 - STEVENS, W. RICHARD.
 - ⇒ Addison-Wesley. 1994.
- * Computer Networks
 - ⇒TANENBAUM, ANDREW S.
 - ⇒3rd edition. Prentice Hall 1996.
- * Redes de Computadores: das LANs MANs e WANs às Redes ATM
 - ⇒ SOARES, LUIZ F. G.
 - ⇒ Editora Campus. 1995