
JPG – A Partial Bitstream Generation Tool to Support
Partial Reconfiguration in Virtex FPGAs

Anup Kumar Raghavan

Motorola Australia Software Centre
Adelaide SA Australia

anup.raghavan@motorola.com

Peter Sutton
School of Information Technology and Electrical

Engineering
The University of Queensland

Brisbane QLD Australia
p.sutton@itee.uq.edu.au

Abstract
Reconfigurable computing based on partial

reconfiguration of field programmable gate arrays
(FPGAs) is yet to move to the mainstream of computing.
Hardware devices that support such reconfiguration are
now available but no readily available software exists to
generate the required partial bitstreams. The JPG tool
described in this paper is a Java-based partial bitstream
generator designed to fit within the standard Xilinx FPGA
design flow. JPG, based on the Xilinx JBits API, is able to
generate partial bitstreams for Xilinx Virtex devices based
on data extracted from the standard Xilinx CAD tool flow.

1 Introduction

Reconfigurable Computing (RC) involves altering the
programmed design within a static-RAM field
programmable gate array (FPGA) at run-time [1]. RC
allows the design of hardware to be changed in response to
the demands placed on the system while it is running, or it
allows the execution of more complex designs than the
number of gates available in the device would traditionally
allow. The “ideal” of RC, is to be able to context-switch
hardware in the same way that CPU’s context-switch
software.

Early FPGAs supported only “full” reconfiguration,
i.e., the configuration of the complete device had to be
loaded in order to change even a small part of the design.
More recent FPGAs such as the Virtex series from Xilinx
[3] and the AT6000 series from Atmel Corporation [4]
support partial reconfiguration, that is, the ability to
modify only a portion of the design. Some devices support
dynamic reconfiguration: the ability to change a portion of
the design whilst the remainder of the device continues to
operate.

Partial and/or dynamic reconfiguration allow faster
context-switches than “full” reconfiguration, however, such

switches are usually still more time consuming than CPU
context switches. When you include the time taken by
software tools to generate new configurations (possibly
hours) compared with software compilers (seconds or
minutes) this disadvantage is exacerbated.

This paper describes a tool (JPG), designed to fit into
the standard Xilinx Foundation 3.1 design flow, which
enables the generation of partial bitstreams. Partial
bitstreams can be generated by running the standard design
tools on individual modules rather than complete designs.
This shortens the turn-around time for producing modified
designs. JPG is based on the Xilinx JBits API and can
generate partial bitstreams for Xilinx Virtex series FPGAs.

The remainder of the paper is organized as follows.
Section 2 reviews FPGA CAD tool flows and bitstream
generation. Section 3 describes the operation of the JPG
partial bitstream generator and how it fits into the standard
tool flow. Section 4 discusses the advantages and
disadvantages of the approach. Some conclusions are
drawn in Section 5.

2 FPGA Tool Flows and Bitstreams

In the traditional CAD tool flow for FPGA design, the
place and route (P&R) steps usually require the longest
execution time [5]. Making changes, therefore, can be an
expensive process that involves significant time and effort.
For reconfigurable computing applications, however, it is
usually desired that changes can occur frequently.
Applications mentioned in [1] reuse the same hardware
with several different designs that change quite frequently.
It is difficult to generate new configurations quickly using
standard tool flows.

The traditional EDA CAD flows are generally intended
for static designs. These flows produce a complete
bitstream file that is downloaded into the device to
implement a specific application. For dynamically changing
designs, a portion of the design will need to be changed to
implement the newer functionality, while the remaining

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

portion of the design remains unaffected. As conventional
CAD tools generate complete bitstreams, they cannot, in
general, be used to implement reconfigurable computing
designs. Reconfigurable computing therefore needs tools
that can produce partial bitstreams.

2.1 FPGA Bitstreams

In most FPGA architectures, the entire device would
be configured using one complete stream of configuration
data called the bitstream. This bitstream contains the
information required to activate the resources (e.g. switches
and lookup tables) in the FPGAs and implement the
designed circuit. If any of the resources in the FPGA need
to be changed, the entire configuration data would be
regenerated by the available CAD tools and would then
have to be re-loaded into the device. The complete
bitstream will hold the programming information for both
used and un-used resources in the FPGA architecture.

In order to perform efficient partial reconfigurations,
one solution is to be able to create partial bitstreams.
Partial bitstreams are subsets of a complete bitstream. The
detail in these bitstreams is less than that in a complete
bitstream and should, theoretically, require less effort to
generate.

The advantages of producing partial bitstream files are
many. These include:
• The overall run time for CAD tools to complete the

mapping, placement and routing will be shorter as we
are dealing with a smaller area of logic. This can mean
shorter design iterations and quicker time to market.
Alternatively, it could mean more highly optimized
designs in the same design time.

• The time involved in downloading the partial bitstream
file and reconfiguring the device will be shorter as the
size of the partial bitstream files will be smaller
compared to complete bitstream files.

2.2 JBits

Xilinx has developed JBits [6,7], a set of Java APIs [8]
which allow programmers (who may or may not be the
hardware designers) to create software that manipulates
Xilinx Virtex device bitstreams.

A disadvantage of using JBits is that it has a very low
level model of the FPGA device. This means that the
designer has to understand the device architecture
thoroughly and make changes to the design by
manipulating the low level resources in the devices e.g.
interconnects, switches, connection blocks, switch blocks,
and CLBs. Hence, the tool can be useful to work on small
sized designs or to make small changes to the design but
isn’t very effective when trying to make large scale
modifications. For large scale designs, JBits is better used

as an API on which to base generic tools, rather than
design-specific tools.

2.3 Related Work

The JBitsDiff [9] and PARBIT [10] tools share some
similarities with this work. JBitsDiff, like JPG, is built on
the Xilinx JBits API. Rather than producing partial
bitstreams, however, JBitsDiff extracts information from
the bitstream to generate pre-routed and pre-placed JBits
cores. A JBits core is a sequence of Java method
invocations (using the JBits API) that will manipulate a
device bitstream in order to insert the core at some location
in the device.

PARBIT is a C program which supports partial bit-
stream generation for Xilinx Virtex-E devices. The main
difference between PARBIT and JPG is that PARBIT uses
a separate options file for specifying information about the
partial bitstream to be generated, whereas JPG relies on
information extracted from design and constraint files
within the Xilinx CAD tool process.

3 JPG Tool

The concept of partial reconfiguration performed using
the JPG tool is illustrated in Figure 1. To implement
designs that use partial reconfiguration, at least one
complete base design should be available. The partial
reconfiguration designs then provide alternative, possibly
upgraded, functionality from the base design.

As seen in Figure 1, the FPGA is partitioned into sub-
modules. Each sub-module represents individual logic that
can be changed by partial reconfiguration at a later stage.

In the example shown, the device is partitioned into
four regions, and one of them is shaded, which indicates
that it will be modified at some point in time. There are

Host
Processor

 FPGA

Pre-Synthesized Design modules

Figure 1. RC environment, the host
processor sends design updates to
the FPGA

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

three different implementations for that particular logic
module and their partial bitstreams are obtained using the
JPG tool. The JPG tool allows the designer to download
any particular implementation on the base design thus
partially reconfiguring the device.

The complete CAD flow incorporating the JPG tool is
shown in Figure 2.

The process to setup a design and create partial
bitstreams involves two phases. Phase 1 involves creating
the base design, partitioning the base design with sub-
modules of individual logic and implementing the sub-
modules. Phase 2 involves creating different versions of the
sub-modules that will be used to partially reconfigure the
sub-module in the base design

Figure 2. JPG CAD tool flow.

Re-iterate
if necessary

XDL files +
UCF files

tool

NCD & NGD files

NGD and guide file

UCF file

Input - Initial Constraint definitions

Design1
VHDL/Verilog/Schematic
 Initial Constraint def’ns

Placement and
Routing

Floorplanning

Mapping

JBits API

JPG tool,
XDL Parser

Partial
Bitstream

Bitgen to generate
complete Bitstream

Complete
Bitstream

Create XDL files
from XDL program

Xilinx
Foundation
Tools

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

3.1 Phase 1 – Base Design

The design process starts by partitioning the base
design into smaller modules that would represent different
modules of the design. A HDL or schematic description of
the individual modules is created, with one top-level design
file. An initial floorplan is developed to constrain the
placement of the individual modules onto specific regions
of the device. This sets a base location for the modules that
will be used later on, when it is partially reconfigured. The
files are then synthesized, mapped, placed, and routed using
the Foundation tools to generate a complete bitstream file
for the base design.

To update the base design with changes in
functionality on individual modules, partial reconfiguration
can be done on that module alone instead of changing the
design completely. To perform partial reconfiguration,
partial bitstream files are required. The JPG tool replaces
portions of the existing design in the device with the new
partial bitstream files thus implementing new/updated
designs on the same chip.

3.2 Phase 2 – Partial Designs

Changes on the sub-modules are performed as a new
project in the Foundation tool. This means that the sub-
module will be the only design file in the project (without
other modules as the base design). The steps taken are as
follows:
• Guided floorplanning is performed using the

constraints from the base design to place the updated
sub-module in the same location as that of the base
design.

• The Foundation tool is used to complete the mapping,
placement and routing for the updated sub-module
using the constraint files obtained from the previous
step. This step may need to be iterated to obtain the
desired results.

• The previous step results in several files. Those
relevant to the JPG tool are those with the extensions
.ncd and .ucf. The NCD file is a binary database file
(Xilinx Foundation tool specific) that has all the
connectivity details used in the design. The XDL
utility converts the corresponding .ncd file into an .xdl
file (ASCII file) that will contain useful information
regarding the resources that have been used to
implement the design.
At this point, the use of the Xilinx CAD tools is

complete, and the flow continues using the JPG tool to
produce partial bitstreams.

3.2.1 JPG Tool Usage
The JPG tool (shown in Figure 3) is used to produce

partial bitstreams as follows:
• A new project can be created in JPG or an existing

project can be opened.
• The complete bitstream file from the base design is

used to initialize the environment variables in the JPG
tool. The JPG tool needs the base design to generate
partial bitstreams.

• The .ucf and .xdl files obtained from the previous steps
are passed in as input to the JPG tool. These files are
the newer versions of the sub-modules that need to be
partially reconfigured. The parser in the tool reads
information from these files and makes appropriate
JBits calls to initialize the design on the target device.
After reading these files, the JPG tool displays
graphically the target floorplanned area on the FPGA.
This can be used to verify whether the update is
happening on the region desired by the designer.

• The tool offers two options. One option is to obtain the
partial bitstream of the new design, without
downloading the partial bitstream onto the base-design.
Option two allows the designer to write the partial
bitstream onto the base design, thus partially
reconfiguring the device with the updated logic.
When option two is selected to write the partial

bitstream onto the base design, the existing bitstream would
be overwritten. Care should therefore be taken before
modifying the original bitstream. If there is a FPGA board
connected to the PC and the XHWIF interface is used to
connect the tool to the board, the newly generated partial
bitstream is written onto the FPGA thus partially
reconfiguring the device.

Details on the XDL parser step are provided in the
following section.

3.2.2 XDL parser
The JPG tool extracts programming information

obtained from the .xdl and .ucf files and parses them to
make valid JBits function calls to program the device. The
.xdl file is obtained from a .ncd file using standard Xilinx
tools. The .ncd file contains details regarding nets used in
the design to complete connections between components
and with the I/O pads, and geographical information about
the rows and columns occupied by the CLBs (Configurable
Logic Blocks) that implement the design as well as detailed
information on routing resources used to make connections
in the device. Routing information consists of PIPs
(programmable interconnection points) details, wiring
tracks, and CLB pin details that provide source and sink
information for the nets.

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

Figure 3: JPG tool user interface, showing the floorplan of the device

A sample .xdl file contains information as shown

below:

inst "u1/nrz" "SLICE" , placed R3C23
CLB_R3C23.S0 ,
 cfg "CKINV::1 DYMUX::1
G:u1/C307:#LUT:D=(A1@A4) CEMUX::CE
 SRMUX::SR GYMUX::G
SYNC_ATTR::ASYNC SRFFMUX::0 INITY::LOW
 FFY:u1/nrz_reg:#FF

_PINMAP:24:0,1,2,3,4,5,6,7,8,9,10,11,12
,15,14,13,16,17,18,19,20,21,22,23"
 ;

This configuration information is obtained from an
example design. It is this information that is vital to the JPG
tool to deliver reliable partial bitstreams. The text above
describes an instance of a module named “U1.” “nrz” refers
to the name of a signal used in the design. The source node
for the signal begins at a Slice S0 in the CLB at location
Row 3, Column 23 and traverses to the G input of a CLB
on the same module U1, at Column 307. The net traverses
through a set of multiplexers, flip-flops and other
components as indicated. The pin map indicates the set of
pins that have been used to make a connection. These pins
can be from the different components, PIPs (Programmable
Interconnect Points) and so on.

The JPG parser scans through the complete .xdl file
and makes appropriate JBits calls to program the device.
JPG assumes that modules to be introduced by partial

reconfiguration have the same interface as those they are
replacing.

4 Discussion

4.1 Advantages

The JPG tool establishes a link between the Xilinx
Foundation tools and JBits. This allows designers using the
conventional tool flow to take advantage of some of the
low-level features offered by JBits without having to be
familiar with Java or the low-level device architecture.

Projects that require partially reconfigurable solutions
are developed using Xilinx’s standard tools which allow the
designer to be confident in the tool output, both in terms of
correctness and performance (at least more so than using
non-commercial design tools). The JPG tool flow has been
specifically designed to use the mainstream tools and
constraint files where possible, using dedicated software
only for the partial bitstream extraction and not for tasks
such as placement and routing.

The JPG tool facilitates the creation of partial
bitstreams for designs that can be quite large. It enhances
the use of JBits to work on larger designs and provides an
opportunity to create multiple partial bitstreams that are
selected through a GUI interface and downloaded into the
device. A potential advantage in having multiple partial
bitstreams is that the physical-design time involved in
creating partial bitstreams (mapping, placement and routing
time) is significantly less than that for the complete
bitstream.

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

Figure 4: Conceptual model illustrating the
partitioning of the FPGA into several
regions, with each region having ‘x’
number of partially reconfigurable designs.

Figure 4 illustrates the concept of a design that has

different modules that can be changed dynamically. For
each module that needs to be reconfigured, there are several
implementations of the same module with modifications
from the original design.

The device is partitioned into three regions: region 1
has a module that can be configured in three different ways,
region 2 in three different ways, and region 3 in four
different ways. The number of combinations of modules is
therefore 36 (3x3x4). In a conventional CAD flow, which
can only produce complete bitstreams, 36 runs of the CAD
tool flow would be needed to produce the 36 different
bitstreams that would be needed to support all the
combinations of modules. (The runs may not be
independent – they could take advantage of incremental
design support – if present in the tools used.) With the use
of partial reconfiguration, a total of 10 (3+3+4) partial
bitstreams would be needed – each about a third the size of
a complete bitstream. In addition, there would be a single
complete bitstream to initially configure the device.

JPG is capable of generating these partial bitstreams.
The CAD tool flow would be run on each of the 10
modules in their constrained regions, resulting in much
shorter place-and-route times, in addition to the reduced
configuration times from the smaller bitstreams.

4.2 Disadvantages

The JPG tool is specific to Xilinx Virtex FPGAs, since
it is dependant on the JBits API from Xilinx. (JPG could
potentially be extended to the XC4000 and XC6200 series
of FPGAs from Xilinx, as earlier versions of JBits did

provide support for these devices.) In addition, the CAD
flow for JPG usage is slightly more cumbersome than the
standard flow as it involves indirect manipulation and a
little extra effort on the part of the designer. Tighter
integration into the Xilinx tool flow would of course reduce
this problem

5 Conclusion

This paper demonstrates a methodology to create
partial bitstreams in a manner consistent with the standard
Xilinx CAD tool flow. The JPG tool, based on the JBits
Java API, generates partial bitstreams using information
derived from other tools in the standard flow. The JPG tool
brings partial bitstream generation into the conventional
design process, making it easier for designers to generate
partial bitstreams, whilst maintaining the advantage of
commercial CAD tools for most of the design flow. This is
another step on the path of moving reconfigurable
computing techniques into the mainstream design
community.

References

1. Michael Barr, "A Reconfigurable Computing Primer",

Multimedia Systems Design, Sep. 1998, pp. 44-47.
2. John Villasenor and William H. Mangione-Smith,

"Configurable Computing", Scientific American, June 1997.
3. Xilinx Inc., "Virtex 2.5 V Field Programmable Gate Arrays",

Advance Product Data Sheet, 1998.
4. Atmel Inc., ATMEL AT6000 data sheet, 1996.
5. P. S. Sidhu, A. Mei, and V. K. Prasanna, “String matching on

multicontext FPGAs using self-reconfiguration”, in
ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pages 217-226, Monterey, CA,
February 1999.

6. Xilinx Inc., JBits documentation, 1999, Published in JBits
2.0.1 documentation. 8.0 Xilinx Corporation, “JBits- Java
Based APIs.”

7. S. A. Guccione, D. Levi, and P. Sundararajan, "JBits: A Java-
based interface for reconfigurable computing," in Second
Annual Military and Aerospace Applications of
Programmable Devices and Technologies Conference
(MAPLD), (Laurel, MD), September 1999.

8. Sun Microsystems Computer Corporation. The Java
Development Kit - JDK 1.3, URL: http://java.sun.com/ .

9. Philip James-Roxby and Steven A. Guccione. Automated
Extraction of Run-Time Parameterisable Cores from
Programmable Device Configurations. In Proceedings of
IEEE Workshop on Field Programmable Custom Computing
Machines, pages 153-161, April 2000.

10. Edson L. Horta and John W. Lockwood. PARBIT: A Tool to
Transform Bitfiles to Implement Partial Reconfiguration of
Field Programmable Gate Arrays (FPGAs). Washington
University Department of Computer Science Technical
Report WUCS-01-13. July 2001. (Available at
http://www.arl.wustl.edu/arl/projects/fpx/parbit

3

1

2

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

	IPDPS 2002
	Return to Main Menu

