Assisting Network Intrusion Detection with Reconfigurable Hardware

B. L. Hutchings and R. Franklin and D. Carver
Department of Electrical and Computer Engineering
Brigham Young University, Provo, UT 84602
hutch @ee.byu.edu

1 Abstract

String matching is used by Network Intrusion Detec-
tion Systems (NIDS) to inspect incoming packet pay-
loads for hostile data. String-matching speed is often
the main factor limiting NIDS performance. String-
matching performance can be dramatically improved by
using Field-Programmable Gate Arrays (FPGAs); accord-
ingly, a “regular-expression to FPGA circuit” module gen-
erator has been developed. The module generator extracts
strings from the Snort NIDS rule-set, generates a regu-
lar expression that matches all extracted strings, synthe-
sizes a FPGA-based string matching circuit, and generates
an EDIF netlist that can be processed by Xilinx software
to create an FPGA bitstream. The feasibility of this ap-
proach is demonstrated by comparing the performance of
the FPGA-based string matcher against the software-based
GNU regex program. The FPGA-based string matcher ex-
ceeds the performance of the software-based system by
600x for large patterns.

2 Introduction

Network intrusion detection systems (NIDS) monitor
network traffic for predefined suspicious activity or data
patterns and notify system administrators when malicious
traffic is detected so that appropriate action may be taken.
NIDSs often rely on exact string matching of packet pay-
loads to detect hostile packets and string matching is the
most computationally expensive step of the detection pro-
cess [2]. Accordingly, NIDS typically apply string match-
ing only to those packets that are most suspect, and only to
those sections of the packet most likely to contain the of-
fending data. For example, Snort (a popular NIDS found at
www.snort.org) [10] checks port numbers, packet headers
and flags, etc., to ensure a given packet has a high likeli-
hood of containing hostile data before performing string
matching on the packet data. Unfortunately, while this
strategy of data reduction makes the problem of detecting
hostile packets tractable, it also means that it is likely that a

malicious packet may be overlooked. This paper explores
the feasibility of using reconfigurable FPGAs to perform
string matching for NIDS with the end goal of performing
string matching on all packets at network rates.

This paper discusses the design and performance of an
FPGA-based regular-expression module generator that was
developed entirely in Java using JHDL [1, 7]. The mod-
ule generator automatically: (1) extracts strings from the
Snort rule database[10], (2) generates a regular expression
that matches all extracted strings, (3) synthesizes a circuit
that will match the generated regular expression, and (4),
generates an EDIF netlist that can be processed by Xilinx
place and route software to create an FPGA bitstream.

3 Background

Three topic areas are relevant to this project:
e past work in FPGA-based string matching,

e Snort[10], an open-source NIDS that provided the test
data for performance comparisons, and

o JHDL, the Java-based hardware design tool kit that
was used to implement the module generator.

String matching with FPGAs String matching is not a
new application area for FPGA-based systems. Indeed,
some of the earliest papers in FPGA-related research areas
report efforts to accelerate string matching in a variety of
areas. Several references [8, 9, 4, 5, 3] describe a few of the
many string-matching efforts that have been reported over
the last ten years. These efforts cover the broad range of
text searching, from searching general text-based databases
to similarity matching of DNA databases.

Most relevant to this effort is recent work by Sidhu
and Prasanna [11] to accelerate grep regular expression
searches with FPGAs. Because of the need for a rapid in-
teractive response, their approach focused on compilation
strategies that could quickly convert a regular expression
into an FPGA circuit. As is commonly done in software,

TEEE ':a

COMPUTER

Proceedings of the 10 th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’02) UTE
SOC

1082-3409/02 $17.00 © 2002 IEEE

Sidhu and Prasanna compile the regular expression into a
Nondeterministic Finite Automata (NFA); however, unlike
software approaches, they skip the usual step of deriving a
Deterministic Finite Automata (DFA) from the NFA, and
directly implement the NFA with FPGA hardware. This
simplifies and speeds up the compilation process of creat-
ing regular-expression matching hardware. Each NFA uses
a single FF to implement the accepting state of the preced-
ing stage. Flip-flop-rich FPGAs provide logic and flip-flop
resources well suited for this arrangement.

The module generator discussed in this paper uses the
NFA-based hardware implementation strategy of Sidhu
and Prasanna because of its inherent modularity. With the
NFA approach, each character and metacharacter of the
supported reg-ex syntax can have a corresponding, pre-
compiled circuit element in a related circuit library. Us-
ing a syntax-directed approach, the module generator in-
stances a circuit element that corresponds to each charac-
ter/metacharacter it finds in the regular expression and then
interconnects these elements according to the structure of
the expression. The module generator also extends the pre-
vious work by automating it and augmenting it with addi-
tional metacharacters, including: “?”, ., and “[]”. Over-
all contributions of this work include: (1) development of
a fully automated module generator that can generate cir-
cuits that match arbitrarily large regular expressions, (2)
exploration of various circuit optimizations that improve
speed and area utilization, and finally, (3) application of
this module generator to prove feasibility of using FPGAs
to accelerate string matching in network security applica-
tions.

Snort, An Open Source NIDS Snort[10] is a popular
NIDS that runs under most versions of Linux and Win-
dows. Snort’s basic operation is to examine all network
traffic, and log intrusion events. Pattern-matching tech-
niques are used to compare network traffic to known at-
tacks that are specified in a rule-set. Snort is very popular
because it is open-source and because of the control it af-
fords the user over rule-set configuration. A user can easily
modify the rule-set, for example, to reduce the number of
patterns to improve performance or to add patterns to de-
tect new attacks. For this project, Snort provided a model
of NIDS function and, more importantly, a default rule-
set that contained the test data that were used to test the
automatic module generator and the circuits that it gener-
ates. The default rule-set contains patterns for detecting
various attacks as well as viral exploits such as Code Red
and NIMDA.

JHDL, a Java-based Design Tool JHDL [1, 7] con-
sists of a set of Java libraries that can be used to perform

programmatic structural design [7]. In its current state,
JHDL is a complete structural design environment that in-
cludes debugging, netlisting and other design aids. Cir-
cuits are described by writing Java code that programmat-
ically builds the circuit via JHDL libraries. Each circuit
element in JHDL is represented as an object; these objects
inherit from core classes that setup the net-list and simula-
tion models. Circuits are created by calling the construc-
tor for the corresponding JHDL object and passing Wire
objects as constructor arguments that are connected to the
ports of the circuit. Once constructed, these circuits can be
debugged and verified with the JHDL simulator and design
browser. JHDL emits EDIF net-lists that can be passed
to Xilinx place and route software for bit-stream genera-
tion. Finally, JHDL provides run-time support for debug-
ging the running hardware in the context of the original
design using the same GUI as the JHDL simulator. JHDL
is suitable for this project because it can be used to write
module generators [6] that are much more complex than
can be accomplished with VHDL. For example, complex
circuit-generation algorithms and data structures that are
much more amenable to general-purpose languages can be
written in Java and combined with JHDL circuit libraries
to create sophisticated module generators.

4 Technical Approach

The technical approach was to create a JHDL-based
module generator capable of handling a wide range of reg-
ular expression operators, based on standard reg-ex syn-
tax. Supporting several reg-ex operators makes the module
generator easier to adapt to future research and also makes
it usable for other string-matching tasks apart from net-
work intrusion detection. However, for this project, only
two regular expression operators were absolutely neces-
sary: concatenation (implicit) and alternation (|). The
module generator uses concatenation to create strings from
single characters and alternation to create one large regu-
lar expression from all of the individual strings extracted
from the Snort rule-set. This section will provide a brief
overview of regular expression syntax and the general form
of the strings that were used to test the system, will dis-
cuss how the module generator was developed in JHDL
and will discuss some of the circuit optimizations that were
explored.

4. Regular Expression Syntax

Regular expressions are a common way to express
string matching patterns. The atomic elements of a reg-
ular expression are the single characters to be matched.

TEEE ':a

COMPUTER

Proceedings of the 10 th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’02)
SOCIETY

1082-3409/02 $17.00 © 2002 IEEE

These are combined with meta-character operators that al-
low the user to express concatenation, alternation, Kleene-
star, etc. Concatenation (implicit) is used to create multi-
character matching patterns from single characters (or sub-
strings) while alternation (|) is used to create patterns that
can match any of two or more substrings. Kleene-star
(*) allows a pattern to match 0 or more occurrences of
the pattern in a string. Combining the different opera-
tors and single characters allows complex expressions to
be constructed. For example, the expression (th(is|at)*)
will match “th”, “this”, “that”, “thisis”, “thisat”‘, “thatis”,
“thatat”, etc. The supported syntax also accommodates
hexadecimal notation that is used to describe nonprintable
characters (ASCII) in the Snort rule database. For exam-
ple, the sequence \x00 will match the null character and
\x20 will match a space.

The module generator also supports the “?” operator
which will match 0 or 1 occurrences of the expression to
which it is applied. r1r2? will matchrl, orr1r2. It is imple-
mented such that it matches rl:e where € means it matches
immediately. The availability of this operator makes it pos-
sible to study the impact that sharing common string pre-
fixes has on FPGA circuit area. For example, the expres-
sion run{running can be converted into run(ning)? which
may reduce the number of comparators used to match the
characters in the expression.

A simple circuit for matching the regular expression
a(b|c)? is presented in Figure 1 to help explain the gen-
eral operation of the matching circuits created by the mod-
ule generator. a(b|c)? matches: “a”, “ab”, and “ac”. The
corresponding matching circuit (shown in Figure 1) con-
sists of three character matchers (the three blocks in the
figure), two OR-gates and interconnecting wires. A charac-
ter matcher consists of an edge-triggered D flip-flop (FF),
a character comparator, and an AND-gate. The input to
the FF serves as an enable to the character matcher; the
output of the character matcher becomes true on the next
clock edge if: (1) the character input matches the compared
value, and (2) the enable signal (the FF input) is a logi-
cal ‘I’. During circuit operation, all input characters are
broadcast to all character matchers one character at a time.
For the sake of illustration, assume that the input string to
the circuit is “ab” and that all FFs are reset to a logical ‘0’.
Now, ‘a’, the first character, is broadcast to all character
matchers and on the next clock edge the output of the first
character matcher becomes a logical ‘1’. This enables the
‘b’ and ‘c’ character matchers because this output is wired
to the enables for these matchers; it also causes the Match
signal to become true (the regular expression matches “a”).
The second character, ‘b’, is then broadcast to the charac-
ter matchers and on the next clock edge the output of the
‘b’ character matcher becomes true. This signal is OR-

Match

a(blc)?

‘l'

——13; _._:}, -
I i |

Cilaracter Input

Figure 1: A Matching Circuit for a(b|c)?

ed together with the output from the ‘a’ character matcher
output and generates a true value on the Match output (the
regular expression matches “ab”). For additional exam-
ples, please see the paper by Sidhu and Prasanna [11].

4.2 Examples from the Snort Rule Database

Patterns from the Snort rule database are used to gener-
ate regular expressions for intrusion detection. Snort rules,
in general, specify much more than just a data pattern to
search for; they include information on packet headers and
flags, TCP ports, etc. However, this effort is only con-
cerned with string matching, so the parser extracts only the
“content” fields from Snort rules and combines them into
one regular expression. For example,

content:"|00|E|00|M|00|L";
content:"|00|N|00|W]|00|S";

content: "R|00|I|oo|c|oo|H[00|E|00|D|00]2|00[0";

are the actual content fields from a Snort rule that de-
tects the NIMDA virus. These three patterns are combined
by the module generator into a single regular expression,
shown below.

(\x00E\x00M\x00L |
\x00N\x00W\x00S |
R\x00I\x00C\x00H\x00E\x00D\x002\x000)

Another example is the content field from a Snort rule for
detecting attempts to access the Code Red 2 back Door:

content: "scripts/root.exe?"

which is converted to the regular expression:
{scripts/root\.exe\?) (the backslash “escapes”
the “.” and “?”).

II'FI'

COMPUTER

Proceedings of the 10 th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’'02)
SOCIETY

1082-3409/02 $17.00 © 2002 IEEE

4.3 Operating Environment

The operating environment for this module generator
differs from that described in Sidhu and Prasanna in two
significant ways.

1. Hardware can be precompiled. Patterns are known
well beforehand and compile time is not an issue for
network security applications. Thus, vendor place
and route tools are used to create a fully automatic
regular-expression-to-bitstream tool. This is in con-
trast to Sidhu and Prasanna where vendor place and
route software could not be used and there was no au-
tomatic path from the regular expression to matching
hardware (several manual steps were reported in the

paper).

2. Matching patterns can be very large. The entire de-
fault Snort rule-set contains content rules in excess of
15,000 characters and will continue to grow as more
attacks and viruses are identified. This means that cir-
cuits must be area efficient so that the available FPGA
resources can be used to match as many patterns as
possible.

4.4 JHDL versus VHDL

The design and implementation of the regular-
expression module generator was heavily influenced by the
availability of a general-purpose language such as Java.
Generally, complex module generators consist of two ma-
jor parts: a front-end that performs data processing to de-
termine the structural circuit details based on some user
specification, and a back-end that performs circuir gen-
eration and emits the corresponding net-list. Except in
cases where the module generator is extremely simple, a
general-purpose language ‘is better suited for implement-
ing the front-end than a Hardware Description Language
(HDL) such as VHDL. Front-end processing usually in-
terprets user input and this often requires the sort of pro-
cessing normally associated with programs written using
general-purpose languages: parsing of input, error detec-
tion, construction and processing of dynamic data struc-
tures such as linked lists and trees, file /O, etc.

For example, the front-end of the regular-expression
module generator performs the following:

1. opens and parses the Snort file to extract the content
fields of each rule (the strings to be matched),

2. generates a large regular expression that includes all
of these strings,

3. parses the generated regular expression to create an
internal representation of the expression that is used
for circuit generation, and

4. optimizes the generated regular expression to extract
substrings that can be shared, etc.

The module generator front-end is implemented with Java
source code and the back-end uses Java source and JHDL
libraries to generate a detailed structural description and
EDIF net-list.

VHDL is not suitable as the sole implementation lan-
guage for a module generator such as that described in
this paper. Apart from the general awkwardness of writ-
ing parsers, dynamic data structures, etc., in VHDL and
debugging them with a simulator, VHDL tools make it im-
possible to perform execution of both the front-end (data
processing) and back-end (circuit generation) in a single
tool or environment. For example, front-end software writ-
ten in VHDL can be “executed” with a VHDL simulator,
however, it is not possible to then generate circuits in a sim-
ulator. On the other hand, a VHDL synthesis tool can per-
form circuit generation, but it cannot execute the front-end
software in order to obtain the parameters used to generate
the circuit.

The only way to overcome this problem with VHDL is
to take a combined strategy that uses a general-purpose lan-
guage such as C++ for front-end processing and a VHDL
synthesis tool as the back-end for circuit generation. How-
ever, this approach is also unsatisfactory for several rea-
sons:

1. It requires the designer of the module generator to
have expertise in both C++ and VHDL.

2. It complicates the design and debugging of the mod-
ule generator because the designer will have to debug
both the C++ and VHDL code.

3. It requires the end-user to install and maintain an ex-
pensive synthesis tool that in many cases only serves
as a net-list translator because the front-end usually
generates a structural description from the user input.

4. It requires the end-user to understand how to use the
VHDL synthesizer (at least be able to interpret mes-
sages generated by the VHDL synthesizer) because
the front-end will occasionally generate incompatible
VHDL code due to bugs in either the front-end or the
synthesizer, or due to versioning problems.

JHDL overcomes the basic problems listed above be-
cause it is based on a general-purpose language. More-
over, this general-purpose language heritage also makes it
straightforward to add new functionality to the JHDL suite.
The schematic viewer, simulator, and various browser win-
dows have been developed in modular fashion and can
be extended or modified to ease debugging and verifica-
tion on a per application basis. For example, the default

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the 10 th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’02)
1082-3409/02 $17.00 © 2002 IEEE

e

Figure 2: Modified Schematic View

schematic view was extended during this project to pro-
vide a direct visual indication of subexpression matches
that occur during a debugging session. In Figure 2, the ex-
pression (JHDL |bust) is being matched against an in-
coming string of characters. In this example, the cross-
hatch pattern indicates that the *J’ and 'H’ characters have
matched thus far. Extending JHDL tools in this manner is
enabled via a standard API and a few lines of Java code.

4.5 Hardware Implementation Details

Efficient utilization of FPGA resources is important be-
cause Snort rule-sets currently contain approximately 15K
characters — a figure that will grow continually. Accord-
ingly, various optimization strategies are used to improve
the utilization and performance of circuits generated by the
module generator. To improve overall performance, the
module generator: (1) uses mapping directives to reduce
the area of the most commonly used operator (concatena-

tion), (2) creates a pipelined fan-out tree to reduce propa-

gation delay for character broadcasting, (3) reorganizes the
regular expression to improve OR-gate performance, and
(4) shares common subexpressions to further reduce area.

The module generator optimizes the concatenation op-
erator (the most commonly used operator) by forcing a sin-
gle, eight-bit character matcher to fit within a single slice
by using mapping directives. The output of the matcher
passes through a flip-flop and connects back into the slice
via the carry chain to implement a logical AND of the
match of the current character and the previous one as
shown in Figure 3. This leads to a reduction in circuit area
that is reported later. Minor attempts were also made at
manual placement but early feedback suggested this may
not be effective for this application.

With the NFA approach, incoming characters are glob-
ally broadcast to all character matchers and this can create
performance problems due to very large fan-out and the
resultant loading of the broadcasting wires. The module

SLICE OUTPUT
CHARACTER INPUT

L.
]
»
ﬁ

—]
PREVIOUS
OUTPUT i,

I
A

Figure 3: Virtex Slice usage

generator overcomes this by creating a pipelined broad-
cast tree that takes into account the fan-out requirements
of the string matcher. The tree structure reduces loading
on any individual wire by distributing tlie load across sev-
eral branches of the tree. The tree is pipelined to further
improve clock rate. :

The module generator also reorganizes the regular ex-
pression to make it easier to implement the alternation op-
erators as distributed OR-gates. For example, the alter-
nation operator can be naively implemented with a single
OR-gate for each occurrence of the operator. However, this
will create a long serial chain of OR-gates that may result
in long delays and poor performance. The module genera-
tor takes an alternative approach and transforms the regular
expression from infix to postfix form. For example, the ex-
pression (a|b|c|d) is transformed into (abcd || |)-
This makes it easier to detect a run of alternation opera-
tors. Each run of alternation operators is grouped together
with an OR-gate of appropriate size (four-input in the ex-
ample) and the module generator connects these with other
OR-gates for which these runs are constituents. This par-

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the 10 th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’'02)
1082-3409/02 $17.00 © 2002 IEEE

allel approach to implementing the OR-gate improves per-
formance by reducing the combinational delay that occurs
with the naive, serial approach.

Different versions of the module generator also com-
bined common prefixes to reduce FPGA area. For exam-
ple, the words “this” and “that” share the common pre-
fix “th”. This means that the two regular expressions,
“this|that” and “th(is|at)”, are equivalent. The module gen-
erator recognized these common prefixes by building a
TRIE dictionary from the different sequences within the
regular expression. Experiments confirmed the area sav-
ings, however, clock frequency was generally lower be-
cause sharing common prefixes lowers the number of flip-
flops between combinational logic. Table 1 illustrates the
tradeoffs for a 600 character string containing shared pre-
fixes.

S Performance Analysis

To determine relative performance, the circuits gener-
ated by the module generator were compared against a
software-based string matcher, GNU “regex”. The testing
process used three computers: one that sends data consist-
ing of mostly printable text with inserted attacks, a second
that reads this data over the network and time stamps it
immediately before and after passing it through either the
GNU regex or FPGA-based matcher, and a third computer
that reads the time-stamped data and computes overall la-
tency. The test data varied in size and incorporated a rep-
resentative sample of rules in the default Snort rule-set that
target the following types of intrusion:

e attacks on webservers
o viruses such as NIMDA and Code Red

e backdoor/trojan exploits
5.1 Test Setup

Pentium 3 (750 MHz) computers running Redhat Linux
version 2.3.7-10 served as the test computers. The string-
matching circuits executed on a PCI-based ISI SLAAC-
1V board (housed in the second computer) that contains
a Virtex XCV1000 device and several FIFOs that support
high-throughput DMA transfer. Global clock rate for the
FPGA device was set to 33MHz because of limitations in
the FPGA interface to the PCI bus — a figure that is gen-
erally much lower than the FPGA circuits can operate, as
reported by the Xilinx static timing analyzer. The reported
latencies include only the actual time spent string match-
ing and ignore any delays due to TCP/IP overhead or other
network delays (time stamps are computed just before, and

Jjust after the string match occurs). Overall throughput was
computed by dividing the size of the data set by the aver-
age time taken to process the entire data set over ten test
runs. The CPU utilization figures are calculated according
to:

(User Time + System Time)

Elapsed Real Time

5.2 Interpretation of Results

From the results in Tables 2 and 3 it can be seen that
for small test cases, software and hardware performance
are approximately the same. However as the size of the
regular expression increases, the hardware based imple-
mentation outperforms the software-based version by more
than 600x in the worst case. Throughput for the circuit-
based string matchers requires one clock cycle per char-
acter of input (O(1) in regular-expression length); larger
regular expressions simple acquire more circuit area to ex-
ploit more parallelism to process the longer string in the
same amount of time. Throughput for the circuit-based
string matchers is thus independent of the length of the reg-
ular expression and the small variances seen in the tables
are the result of experimental error. In contrast, software-
implemented string matchers require more time to pro-
cess each incoming character as the regular expression
grows in length. An examination of the two tables shows
that, for the middle range of the tests (844 - 2689 charac-
ters), software slowdown relative to the size of the regular
expression is roughly linear (O{n) in regular-expression
length) although it gets worse at 4971 characters. An-
other item of interest is the relatively low and relatively
constant CPU utilization of the hardware based implemen-
tation which is independent of the size of the data being
searched. This occurs in the hardware-based test setup
because the CPU is primarily moving data, leaving the
computationally-intense string matching operations to the
FPGA-based matcher. CPU utilization and throughput data
from Table 2 are also plotted in Figures 4 and 5.

5.3 FPGA Utilization Data

Tests also included the computation of FPGA area uti-
lization for several string matchers of different sizes. Data
are organized into two sets: one set shows the perfor-
mance/utilization data with manual mapping turned on (as
discussed in the Technical Approach), the other set shows
performance/utilization data with manual mapping turned
off (Table 5). As is typical for many FPGA-based designs,
clock frequency for the hardware string matchers drops
with increased utilization. This tends to be especially true
for circuits like the string matcher which require lots of

TEEE ':a

COMPUTER

Proceedings of the 10 th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’02)
SOCIETY

1082-3409/02 $17.00 © 2002 IEEE

Table 1: Comparison of approaches for Regular Expression Implementations

| Implementation || Slices | Flip-Flops | LUTs | Routed | Frequency (MHz) |
NFA(non-shared, 660 chars) 674 661 | 1347 7946 43.219
NFA(shared, 660 chars) 556 527 | 1092 6405 34.483

Table 2: FPGA vs. software regex performance for a IMB data set sent in 1kB chunks

Size of Regular Hardware | Software | Hardware Software Hardware | Software
Expression (# of Latency | Latency { Throughput | Throughput CPU CPU
non-Meta characters) (ms) (ms) kB/s kB/s Utilization | Utilization |
47 <1 <1 390 432 33.9% 11.2%
435 <1 3.2 340 197 33.6% 67.6%
844 <1 37.6 381 23.5 34.3% 91.9%
1,420 <1 104 284 8.90 28.4% 96.3%
2,689 <1 240 291 4.63 24.7% 98.3%
4,971 1.2 970 331 0.99 43.7% 99.4%

Table 3: FPGA vs. software regex performance for a 10MB data set sent in 16kB chunks

Size of Regular Hardware | Software || Hardware Software Hardware | Software
Expression (# of Latency | Latency || Throughput | Throughput CPU CPU
non-Meta characters) (ms) (ms) kB/s kB/s Utilization | Utilization

47 <1 <1 862 884 19.3% 11.8%
435 <1 50.9 870 278 18.1% 97.3%
844 <1 602 824 24.0 16.3% 98.3%
1,420 <1 978 826 14.9 19.3% 99.6%
2,689 <1 1930 838 7.58 20.1% 99.6%
4,971 7.38 8400 784 1.72 38.5% 99.8%

Proceedings of the 10 th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'02)

1082-3409/02 $17.00 © 2002 IEEE

YF]',F.

COMPUTER

SOCIETY

% of CPU Utitzation
8

§

Tenughput (i)

Proceedings of the 10 th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’'02)

woo 3500

3000 um ‘S’W 5000
dmwldmmml

Figure 4: CPU Utilization

)')u 2000 2500 3000 3500 4000 4500
Size of regutar exprassion(8 of ron meta characters |

500) C"C\l]

Figure 5: CPU Throughput

1082-3409/02 $17.00 © 2002 IEEE

global routing resources (string matching requires broad-
casting of character data throughout the FPGA).

The results obtained by turning off manual mapping are
somewhat surprising. Turning off manual mapping dra-
matically increases the amount of circuitry by at least 50%
or more but reduces clock rate for the largest regular ex-
pressions. Further study of this issue will be required to
fully understand the tradeoffs that manual mapping pro-
vides, however, for the time being, these data indicate that
the module can either optimize for clock rate or area de-
pending on whether the number of patterns or overall per-
formance is the major concern.

6 Conclusions

FPGA-based string matching appears to be a suitable
candidate for use in NIDS. Inclusion of FPGA-based
matchers in these systems may reduce the CPU workload
significantly and make it possible to examine more data
in more packets than is possible with software-only ap-
proaches. Presently, the rules in NIDS like Snort must be.
carefully written to examine packet data payloads only af-
ter everything else has been tried; hardware-based match-
ers like those described in this paper should ease this re-
striction considerably. This is not to imply that accelerating
string matching as discussed in this paper is a panacea; net-
work security is a very complex problem and string match-
ing represents only a small part of the overall solution.
Still, hardware-based pattern matchers that are capable of
inspecting packet data at network data rates for most or all
of the traffic on the network should prove to be very useful.

7 Future Work

The work reported here proves basic, technical feasi-
bility of using reconfigurable FPGAs to accelerate string
matching for network security applications. Future work
will probably focus in two general areas: circuit and tech-
nology optimizations, and additional applications in net-
work security. In these early stages of the project, the focus
was on achieving error-free operation with moderate levels
of performance. The generated circuits are only moder-
ately pipelined and there is a lot of room for clock rate
improvement. Virtex-2 devices also present opportunities
for performance enhancement and optimization strategies
for these devices will be studied. Beyond string match-
ing, there are opportunities for applying circuit-based op-
timizations to other parts of the networking and security
problem. For example, packet reassembly was performed
using software for this project. It may make sense to im-
plement the TCP/IP stack directly on the FPGA in order

TEEE ':a

COMPUTER

SOCIETY

Table 4: FPGA utilization statistics for various sized designs

----- | T XCVI000 Part KOV 2000e Part
Size of Regular #of #of Maximum % of Maximum % of
Expression (# of Slices Slices per Ciperating available || Operating available
non-Meta characters) Required Character | Frequency (MHz) | slices used || Frequency (MHz) | slices used
-, 157 1.50 99,3 1% 126.3 1% |
[506 863 171 635 % 85.8 % |
1,005 1,423 1.42 622 11% 83.0 % |
I 2,008 2,331 | 1.16 19.9 18% | B2 2 12% |
[4,003 4,375 | L09 3.5 35% 88.6 — 2%
i 8,003 10,300 | 1.28 || 309 83% 52.5 1 53%
16,028 | 20,116 L26 | N7A N/A 49.5 79% |
Table 5: Comparison of optimized mapping scheme vs. standard XILINX mapping
Optimized Mapping Scheme Completely Unmapped
Size of Regular # of # of Maximum #of # of Maximum
Expression (# of Slices Slices per Operating Slices Slices per Operating
non-Meta characters) || Required | Character | Frequency (MHz) || Required | Character | Frequency (MHz)
99 157 1.59 99.3 256 2.56 90.6
506 863 1.71 63.5 1,349 2.70 62.4
1,005 1,423 1.42 62.2 2,271 2.27 51.9
2,008 2,331 1.16 49.9 3,845 1.92 52.7
4,003 4,375 1.09 43.5 7,486 1.96 61.1
8,003 10, 309 1.28 30.9 13,450 N/A N/A

to achieve higher levels of performance. Finally, FPGAs
that include an embedded processor present an interesting
target of opportunity; they have the potential to provide an
integrated, scalable approach that allows a mix of software
and hardware to be dedicated to problems in network secu-
rity. Software may be used for less regular, control-specific
processing while the hardware may be used for performing
computationally intensive tasks for large, regular data sets.

8 Acknowledgements

The authors would like to thank the many students in
the Reconfigurable Logic lab for their help in this project.
Many thanks also go out to the folks at Los Alamos Na-
tional Laboratories and ISI-East (Maya Gokhale, Brian
Schott and others) for suggesting this topic to us at a
SLAAC retreat.

9 References

[1] P. Bellows and B. L. Hutchings. JHDL - an HDL for
reconfigurable systems. In J. M. Arnold and K. L.
Pocek, editors, Proceedings of IEEE Workshop on

(2]

(3]

(4]

[5]

FPGAs for Custom Computing Machines, pages 175-
184, Napa, CA, April 1998.

C. J. Coit, S. Staniford, and J. McAlerney. Toward
faster string matching for intrusion detection or ex-
ceeding the speed of snort. In DARPA Informa-
tion Survivability Conference and Exposition II, 2001
Proceedings, volume 1, pages 367-373, 2001.

W. Culbertson, R. Amerson, R. Carter, P. Kuekes, and
G. Snider. The Teramac configurable custom com-
puter. In J. Schewel, editor, Proceedings of the Inter-
national Society of Optical Engineering (SPIE). Field
Programmable Gate Arrays (FPGAs) for Fast Board
Development and Reconfigurable Computing., pages
201-209, Philadephia, PA, October 1995.

P. W. Foulk. Data-folding in SRAM configurable FP-
GAs. In D. A. Buell and K. L. Pocek, editors, Pro-
ceedings of IEEE Workshop on FPGAs for Custom
Computing Machines, pages 163-171, Napa, CA,
April 1993.

B. Gunther, G. Milne, and L. Narasimhan. Assess-
ing document relevance with run-time reconfigurable

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 10 th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'02)
1082-3409/02 $17.00 © 2002 IEEE

machines. In J. Arnold and K. L. Pocek, editors, Pro-
ceedings of IEEE Workshop on FPGAs for Custom
Computing Machines, pages 10-17, Napa, CA, April
1996.

[6] S. Hemmert and B. L. Hutchings. An application-
specific compiler for high-speed image morphology.
In J. M. Amnold and K. L. Pocek, editors, Proceedings
of IEEE Workshop on FPGAs for Custom Computing
Machines, pages to—appear, Napa, CA, April 2001.

[7] B. Hutchings, P. Bellows, J. Hawkins, S. Hemmert,
B. Nelson, and M. Rytting. A cad suite for high-
performance fpga design. In K. L. Pocek and J. M.
Arnold, editors, Proceedings of the IEEE Workshop
on FPGAs for Custom Computing Machines, page
n/a, Napa, CA, April 1999. IEEE Computer Society,
IEEE.

[8] D. P. Lopresti. Rapid implementation of a genetic
sequence comparator using field-programmable gate
arrays. In C. Sequin, editor, Advanced Research in
VLSI: Proceedings of the 1991 University of Cali-
fornia/Santa Cruz Conference, pages 138-152, Santa
Cruz, CA, March 1991.

[9] D. V. Pryor, M. R. Thistle, and N. Shirazi. Text
searching on Splash 2. In D. A. Buell and K. L.
Pocek, editors, Proceedings of IEEE Workshop on
FPGAs for Custom Computing Machines, pages 172—
177, Napa, CA, April 1993.

[10] Martin Roesch. Snort - lightweight intrusion detec-
tion for networks. In 13th Systems Administration
Conference, LISA ‘99, Seattle, WA, November 1999.
www.usenix.org/events/lisa99/full _papers/roesch/roesch_html/.

[11]1 R. Sidhu and V. K. Prasanna. Fast regular expres-
sion matching using fpgas. In J. M. Amold and K. L.
Pocek, editors, Proceedings of IEEE Workshop on
FPGAs for Custom Computing Machines, pages to—
appear, Napa, CA, April 2001.

TEEE ':a

Proceedings of the 10 th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’02) COMPUTER
1082-3409/02 $17.00 © 2002 IEEE SOCIETY

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

