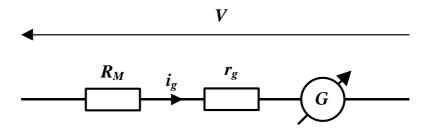


EXPERIÊNCIA No. 4 - Multímetro - Voltímetro

Nome do Aluno	N⁰ de matrícula		

FATEC-SP Faculdade de Tecnologia de São Paulo


Laboratório de Circuitos Elétricos - Prof. Marcelo Bariatto

Parte Teórica

Multímetro é um aparelho de medição que reúne diversos medidores tais como voltímetro, amperímetro e ohmímetro.

<u>Voltímetro (analógico)</u>: é um aparelho destinado a medir tensão elétrica utilizando como elemento central um galvanômetro.

O circuito de um voltímetro é dado por:

onde:

 r_g é a resistência interna do galvanômetro.

 R_M é a resistência multiplicadora.

Aplicando as Leis de Ohm e de Kirchhoff, temos:

$$V = (r_g + R_M) i_g$$

onde i_g é a corrente lida no galvanômetro e V é a tensão que está sendo medida. Portanto, esta expressão representa a escala do voltímetro.

Para projetar um voltímetro de fundo de escala $V = V_{\max}$ \Rightarrow $i_g = i_{g\max}$

$$V_{\max} = (r_g + R_M) i_{g \max}$$

Portanto:

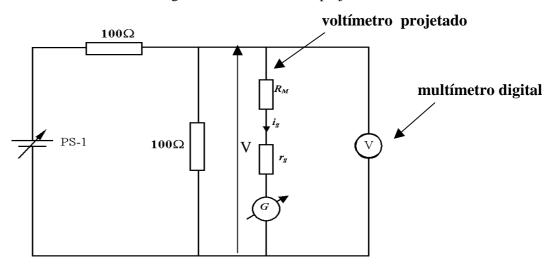
$$R_M = \frac{V_{\text{max}}}{i_{g \text{max}}} - r_g$$

FATEC-SP Faculdade de Tecnologia de São Paulo

Laboratório de Circuitos Elétricos - Prof. Marcelo Bariatto

Parte Experimental

Material


- 1 Galvanômetro ($\mathbf{i}_{gmax} = \mathbf{1mA}$)
- 1 Multímetro digital
- 1 Fonte de alimentação PS-1
- 1 Proto board
- 1 Potenciômetro
- 1 Utilizando um multímetro digital, meça a resistência interna do galvanômetro:

Resistência interna (r _g) [Ω]	
---	--

2 – Projete um voltímetro de fundo de escala de 3V. Utilize um potenciômetro como resistência multiplicadora R_M.

Resistência multiplicadora $(R_M)[\Omega]$

3 – Meça a tensão da fonte PS-1 com o multímetro digital e com o voltímetro projetado.

PS-1 [V]	Tensão calculada (V)	Multímetro digital [V]	i _g Galvânometro [i]	Voltímetro projetado (V)	Simulado (V)	Erro (%)
1						
2						
3						
4						
5						
6						

- **4** Faça o gráfico da tensão medida **V** (multímetro digital) em função da corrente do galvanômetro **ig** (amperímetro projetado). Determine o fator de escala do amperímetro graficamente e compare com o calculado.
- **5** Faça um relatório, demonstrando todos os cálculos realizados no projeto do voltímetro. Compare as medidas feitas com o multímetro digital, com o voltímetro projetado e as simuladas com o programa PSPICE.