
AIASYB-2
Aplicación de la Inteligencia Artificial a los p g

Sensores y Biosensores
PCI-AECID B/024393/09

GENETIC ALGORITHMS

Matilde Santos Peñas and Jesús Manuel de la Cruz
msantos@dacya.ucm.es, jmcruz@fis.ucm.es
Dpto. Arquitectura de Computadores y Automática

Universidad Complutense de Madrid SpainUniversidad Complutense de Madrid, Spain

Brazil, 27 October 2010
South Brazil Section Chapter of the

IEEE Computational Intelligence Society

GENETIC ALGORITHMGENETIC ALGORITHM

“Genetic Algorithms are
good at taking large,good at taking large,

potentially huge search
spaces and navigating

them looking for optimalthem, looking for optimal
combinations of things,
solutions you might not

th i fi d iotherwise find in a
lifetime.”

S l t M- Salvatore Mangano
Computer Design, May 1995

M. Santos

OUTLINEOUTLINE

OVERVIEW
CHARACTERISTICS
SIMPLE GENETIC ALGORITHM (SGA)SIMPLE GENETIC ALGORITHM (SGA)
EXAMPLE
OTHER OPERATORS
EXAMPLEEXAMPLE
APPLICATIONS

M. Santos

EVOLUTIONARY COMPUTATIONEVOLUTIONARY COMPUTATION
Evolutionary computation consists of machine
learning optimization and classification paradigms learning optimization and classification paradigms
that are roughly based on evolution mechanisms
such as biological genetics and natural selectionsuch as biological genetics and natural selection

The EC field comprises four main areas:The EC field comprises four main areas:
– genetic algorithms

l ti i– evolutionary programming
– evolution strategies

M. Santos

– genetic programming.

EC PARADIGMS

EC paradigms differ from traditional search and p g
optimization ones in that EC paradigms:

1) Use a population of points in their search,
2) Use direct “fitness” information, instead of function

derivatives or other related knowledge, and ,
3) Use probabilistic rather than deterministic transition

rules.

M. Santos

EC QUICK OVERVIEW

A.S. Fraser, 1950’s, Australia, biologist using
computers to simulate natural genetic systems
J.D. Bagley (first used term GA in his 1967 Ph.D)J.D. Bagley (first used term GA in his 1967 Ph.D)
L.J. Fogel, Evolutionary programming, 1960’s
I R h b E l ti t t 1960’I. Rechenberg, Evolution strategy, 1960’s
Latane, Particle swarm optimization (Social
impact theory)

M. Santos

GA QUICK OVERVIEW

J. Holland (1975), “Adaptation in natural and artificial
systems”systems
DeJong’s dissertation on GAs, 1975
D Goldberg book “GA in search optimization and D. Goldberg, book “GA in search, optimization, and
machine learning”, 1989
Since 1985 interest explosionSince 1985, interest explosion
– International Conferences

Scientific Journals– Scientific Journals
– Web resources
– Widely-used today in business scientific and engineering

M. Santos

– Widely-used today in business, scientific and engineering
circles

GA MAIN IDEAGA MAIN IDEA

Directed search algorithms based on the mechanics of biological Directed search algorithms based on the mechanics of biological
evolutionevolutionevolutionevolution

An initial set of individuals evolve along generations by reproduction
and mutation, to become the best individuals, the ones who survive.

M. Santos

GA CHARACTERISTICS

To understand the adaptive processes of natural
systemssystems
To design artificial systems software that retains the

b t f t trobustness of nature system
Typically applied to discrete optimizationy y
Attributed features:
– not too fastnot too fast
– good heuristic for combinatorial problems
Man ariants e g reprod ction models operators

M. Santos

Many variants, e.g., reproduction models, operators

ADVANTAGESADVANTAGES
Concept is easy to understand
Modular separate from applicationModular, separate from application
Supports multi-objective optimization
Good for “noisy” environments
Always gives an answer; answer gets better with Always gives an answer; answer gets better with
time

An acceptable good solution in a reasonable time
At any stage there is a solution (maybe not the best but a

d)

M. Santos

good one)

Inherently parallel; easily distributed

MORE BENEFITSMORE BENEFITS
Many ways to speed up and improve a GA-
based application as knowledge about the pp g
problem domain is gained
Easy to exploit previous or alternate solutionsEasy to exploit previous or alternate solutions
Flexible building blocks for hybrid applications
(Fuzzy+GA, GA+NN, etc)
Substantial history and range of useSubstantial history and range of use

M. Santos

DISADVANTAGESDISADVANTAGES

You may not find the optimal solution
Th l ti h t t k i t t l th The solution space has to take into account only the
feasible solutions
Definition of the evaluation function that includes the
knowledge of the problemknowledge of the problem
They are not specialized algorithms
– Application dependence

The success depends on the designer
M. Santos

The success depends on the designer

WHEN TO USE A GAWHEN TO USE A GA

Alternative solutions are too slow or overly
complicated
Need an exploratory tool to examine new approachesNeed an exploratory tool to examine new approaches
Problem is similar to one that has already been

f ll l d b i GAsuccessfully solved by using a GA
Want to hybridize with an existing solutionWant to hybridize with an existing solution
Benefits of the GA technology meet key problem

i t
M. Santos

requirements

APPLICATIONSAPPLICATIONS
Complex systems (N-P problems) for which an

acceptable solution is enough

Optimization

acceptable solution is enough

Optimization
Searching
Parameters identification
Pattern recognitionPattern recognition
Machine learning

M. Santos
…

FIELDSFIELDS
Robotics
PlanningPlanning
Optimization (circuits, controllers, neural networks, etc.)
Si l iSimulation
Hardware design and implementation
Data mining
IdentificationIdentification
etc

M. Santos

SOME GA APPLICATION TYPESSOME GA APPLICATION TYPES
Domain Application Types

Control gas pipeline, pole balancing, missile evasion, pursuit

Design semiconductor layout, aircraft design, keyboard
configuration, communication networks

Scheduling manufacturing facility scheduling resource allocation Scheduling manufacturing, facility scheduling, resource allocation

Robotics trajectory planning

Machine Learning designing neural networks, improving classification
algorithms, classifier systems

Signal Processing filter design Signal Processing filter design

Game Playing poker, checkers, prisoner’s dilemma

M. Santos

Combinatorial Optimization set covering, travelling salesman, routing, bin packing,
graph colouring and partitioning

SIMPLE GENETIC ALGORITHMSIMPLE GENETIC ALGORITHM

Holland’s original GA is now known as the
simple genetic algorithm (SGA)
Other GAs use different:Other GAs use different:
– Representations
– Mutations
– Crossovers
– Selection mechanisms

M. Santos

SIMPLE GENETIC ALGORITHMSIMPLE GENETIC ALGORITHM
INITIAL POPULATION GENERATION

for i = 0 to N generationsIt is just an for i = 0 to N generations

EVALUATION

j
algorithm to

solve a

REPRODUCTION (CROSSOVER)

PARENTS SELECTIONproblem

MUTATION

REPLACEMENT

i = i+1

REPLACEMENT

M. Santos
Best individual

GA COMPONENTSGA COMPONENTS

A problem to solve, and ...
Encoding technique (gene, chromosome)

Initialization procedure (ti)Initialization procedure (creation)

Evaluation function (environment)

Selection of parents (reproduction)

G ti t Genetic operators (mutation, recombination)

Parameter settings (practice and art)

M. Santos

g (p)

SIMPLE GA PSEUDO CODESIMPLE GA PSEUDO-CODE
{

initialize population;
evaluate population;
while TerminationCriteriaNotSatisfiedwhile TerminationCriteriaNotSatisfied
{

select parents for reproduction;select parents for reproduction;
perform recombination and mutation;

l t l tievaluate population;
}

}

M. Santos

}

THE GA CYCLE OF REPRODUCTIONTHE GA CYCLE OF REPRODUCTION

reproduction modification
children

p

parents
modified
children

population evaluation
evaluated children

deleted
members

discard

M. Santos

INITIAL POPULATIONINITIAL POPULATION
Population of n individuals (potential solutions)
Individual = data structure (string of characters or Individual = data structure (string of characters or
chromosomes from an alphabet )

CROMOSOME = a a a a a – CROMOSOME = a1 a2 a3 ... am, ai  
– Chromosome: parameters to be optimized

Each element of the chromosome, ai, a gene
– Allele: value
– Locus: position in the string

Size: enough to cover the solution space
M. Santos

Size: enough to cover the solution space

REPRESENTATION

Genotype space =
Variables to be optimized

Genotype space
{0,1}LPhenotype space

Encoding
(representation)(representation)

10010010

10010001

010001001
10010010

Decoding
(inverse representation)

011101001

M. Santos

(inverse representation)

REPRESENTATIONREPRESENTATION

Chromosomes could be:
– Bit strings (0101 ... 1100)
– Real numbers (43.2 -33.1 ... 0.0 89.2) Real numbers (43.2 33.1 ... 0.0 89.2)
– Permutations of elements (E11 E3 E7 ... E1 E15)

Li t f l (R1 R2 R3 R22 R23)– Lists of rules (R1 R2 R3 ... R22 R23)
– Program elements (genetic programming)
– ... any data structure ...

M. Santos

REPRESENTATIONREPRESENTATION

Binary string
– Easy operations
– Lowest cardinality of the alphabet (simples searching)
– Algorithms convergence proved
– Variants (BCD, Gray code, etc)(, y ,)

Other types of representationsOther types of representations
– Different cardinality alphabets

M. Santos

POPULATION INITIALIZATIONPOPULATION INITIALIZATION
SIZE:
• Start with moderate sized population (50-500)
• Population size tends to increase linearly with individual string length

(not exponentially)

RANDOMLY:
• To cover all the spaceTo cover all the space
• To prove the algorithm

HEURISTICALLY (include promising values):HEURISTICALLY (include promising values):
• Assure the variety of solutions (do not skew population significantly)

A id th t f th l ith

M. Santos

• Avoid the premature convergence of the algorithm
• Include constraints

EVALUATIONEVALUATION
FITNESS FUNCTION
– Each individual is assigned a fitness measureEach individual is assigned a fitness measure

• How good it is as solution
• More chances of survivingMore chances of surviving

– The link between the GA and the problem it is solving
• SpecificSpecific

– Normalization (scale fitness values)
• Better discriminationBetter discrimination

M. Santos

REPRODUCTIONREPRODUCTION

PARENT SELECTION

CHROMOSOME MODIFICATIONCHROMOSOME MODIFICATION
– Genetic operators:Genetic operators:

• Crossover (recombination)
• Mutation

G ti t i ifi tl h ll l h

M. Santos

Genetic operators significantly enhance parallel search
capabilities

PARENT SELECTIONPARENT SELECTION

Parents are selected at random with selection
h bi d i l ti t h chances biased in relation to chromosome

evaluation

– Better individuals get higher chanceBetter individuals get higher chance
• Chances proportional to fitness

M. Santos

SELECTION
Implementation: roulette wheel technique

• Assign to each individual a part of the roulette wheel• Assign to each individual a part of the roulette wheel
• Spin the wheel n times to select n individuals

fitness(A) = 3
1/6 = 17%

fitness(A) 3

fitness(B) = 1A CB
fitness(C) = 23/6 = 50% 2/6 = 33%

M. Santos

REPRODUCTION CYCLE
1. Select parents for the mating pool

(size of mating pool = population size)(size of mating pool = population size)
2. Shuffle the mating pool
3. For each consecutive pair apply crossover with

probability pc , otherwise copy parents
4. For each offspring apply mutation (bit-flip with

probability pm independently for each bit)p y pm p y)
5. Replace the whole population with the resulting

offspring

M. Santos

offspring

CROSSOVER: RECOMBINATION

Choose a random

1-POINT CROSSOVER
Choose a random
point on the two
parentsparents
Split parents at this
crossover point
Create children by
exchanging tails
Pc typically in range

M. Santos

c yp y g
(0.6, 0.9)

CROSSOVER RECOMBINATIONCROSSOVER: RECOMBINATION
Crossover is a critical feature of genetic
algorithms:algorithms:

– It greatly accelerates search early in
evolution of a population

– It leads to effective combination of – It leads to effective combination of
schemata (subsolutions on different
h)chromosomes)

– Often start with relatively high xover

M. Santos

y g
rate, and reduce it during the run

MUTATION: LOCAL MODIFICATION
Alter each gene independently with a probability pm
p is called the mutation ratepm is called the mutation rate
– Typically between 1/pop_size and 1/ chromosome_length

Usually held constant or increased during run (when – Usually held constant or increased during run (when
fitness variability drops below some threshold)

M. Santos

MUTATION LOCAL MODIFICATIONMUTATION: LOCAL MODIFICATION

Before: (1 0 1 1 0 1 1 0)

After: (0 1 1 0 0 1 1 0)

Before: (1.38 -69.4 326.44 0.1)

After: (1.38 -67.5 326.44 0.1)

Causes movement in the search space (local or global)
Restores lost information to the population

M. Santos

Restores lost information to the population

SURVIVOR SELECTIONSURVIVOR SELECTION
A new population is generated each generation)
Population replacementPopulation replacement
– Generational GA

• Entire populations replaced with each iteration
– Steady state GAy

• A few members replaced each epoch
– Elitism: the best individual is copied into the next generation
– New individuals randomly generated
– Generational gap: replace x percent (worst individuals)

M. Santos
Population typically remains the same size

TERMINATION CRITERIATERMINATION CRITERIA

Computational time
Number of generations
– Depends on the complexity of the problem– Depends on the complexity of the problem

When the solution converges to a enough good
value (if known)
– Population member(s) with > specified fitnessp () p

No change in max fitness in m generation

M. Santos

ISSUESISSUES
Choosing basic implementation issues:
– representationp
– population size, mutation rate, ...

selection deletion policies– selection, deletion policies
– crossover, mutation operators

Termination Criteria
Performance scalabilityPerformance, scalability
Solution is only as good as the evaluation function

M. Santos

(often hardest part)

SGA SUMMARY

Representation Binary strings

Recombination N-point or uniform

Mutation Bitwise bit-flipping with fixed
probability

Parent selection Fitness-Proportionate

Survivor selection All children replace parentsSurvivor selection All children replace parents

Speciality Emphasis on crossover

M. Santos

p y p

SUMMARY OF GA PROCESSSUMMARY OF GA PROCESS
1. Select the initial population (usually randomly).
2. Select percent probability of crossover (often .6-.8) and of

(f)mutation (often about .001).
3. Calculate the fitness value for each population member.
4 N li fit l d t d t i b biliti f 4. Normalize fitness values and use to determine probabilities for

reproduction.
5 Reproduce new generation with the same number of members 5. Reproduce new generation with the same number of members,

using probabilities from 3.
6. Pair off strings to cross over randomly.
7. Select crossing sites (often 2) randomly for each pair.
8. Mutate on a bit-by-bit basis.

M. Santos

9. If more generations, go to step 2.
10.If completed, stop and output results.

AN EXAMPLE AFTER GOLDBERG ‘89AN EXAMPLE AFTER GOLDBERG ‘89

Simple problem: max x2 over {0,1,…,31}
GA approach:
– Representation: binary code e g 01101  13 (25)– Representation: binary code, e.g. 01101  13 (25)
– Population size: 4 individuals
– 1-point xover, bitwise mutation
– Roulette wheel selection
– Random initialization

We show one generational cycle done by hand
M. Santos

We show one generational cycle done by hand

X2 EXAMPLE: SELECTION

M. Santos

X2 EXAMPLE: CROSSOVER

M. Santos

X2 EXAMPLE MUTATIONX2 EXAMPLE: MUTATION

M. Santos

THE SIMPLE GATHE SIMPLE GA
Has been subject of many (early) studies
– still often used as benchmark for novel GAs

Shows many shortcomings, e.g.
R t ti i t t i ti– Representation is too restrictive

– Mutation & crossovers only applicable for bit-string &
integer representations

– Selection mechanism sensitive for converging g g
populations with close fitness values

– Generational population model can be improved with

M. Santos

Generational population model can be improved with
explicit survivor selection

REVIEW OF GA OPERATIONSREVIEW OF GA OPERATIONS
• Representation of variables
• Population sizePopulation size
• Population initialization
• Fitness calculation
• ReproductionReproduction
• Crossover
• Inversion
• Mutation

M. Santos

• Mutation
• Selecting number of generations

OTHER REPRESENTATIONS
Consider example problem,

where 127 is 01111111 and 128 is 10000000

The smallest fitness change requires change in every bit

Gray coding of integers (still binary chromosomes)
Gray coding is a mapping that means that small changes in the – Gray coding is a mapping that means that small changes in the
genotype cause small changes in the phenotype (unlike binary
coding) “Smoother” genotype phenotype mapping makes life coding). Smoother genotype-phenotype mapping makes life
easier for the GA

M. Santos

OTHER REPRESENTATIONS
Nowadays it is generally accepted that it is better to encode

numerical variables directly asnumerical variables directly as
• Integers

Fl ti i t i bl• Floating point variables

• Some software converts dynamic range and resolution
into appropriate bit stringsinto appropriate bit strings

Diff t l h b t ibl
M. Santos

• Different alphabets possible

INTEGER REPRESENTATIONSINTEGER REPRESENTATIONS
Some problems naturally have integer variables, e.g.
image processing parameters
Others take categorical values from a fixed set e.g. {blue,
green, yellow, pink}g , y , p }
N-point / uniform crossover operators work
Extend bit flipping mutation to makeExtend bit-flipping mutation to make
– “creep” i.e. more likely to move to similar value

R d h i (t i l i bl)– Random choice (esp. categorical variables)
– For ordinal problems, it is hard to know correct range for creep,

so often use two mutation operators in tandem

M. Santos

so often use two mutation operators in tandem

REAL VALUED PROBLEMSREAL VALUED PROBLEMS
Many problems occur as real valued problems, e.g.
continuous parameter optimization f :  np p
Illustration: Ackley’s function (often used in EC)

M. Santos

MAPPING REAL VALUES ON MAPPING REAL VALUES ON
BIT STRINGS

z  [x,y]   represented by {a1,…,aL}  {0,1}L

• [x,y]  {0,1}L must be invertible (one phenotype per genotype)
• : {0,1}L  [x,y] defines the representation

],[)2(
12

),...,(
1

0
1 yxaxyxaa j

L

j
jLLL 




 




O l 2L l t f i fi it t d

12 0j

Only 2L values out of infinite are represented
L determines possible maximum precision of solution

M. Santos
High precision  long chromosomes (slow evolution)

ALTERNATIVE CROSSOVER ALTERNATIVE CROSSOVER
OPERATORS

Performance with 1 Point Crossover depends on the
order that variables occur in the representationp
– more likely to keep together genes that are near each

otherother
– Can never keep together genes from opposite ends of

string
– This is known as Positional Bias
– Can be exploited if we know about the structure of our

problem but this is not usually the case

M. Santos

problem, but this is not usually the case

N-POINT CROSSOVER
Choose n random crossover points
Split along those pointsSplit along those points
Glue parts, alternating between parents
G li ti f 1 i t (till iti l bi)Generalisation of 1 point (still some positional bias)

M. Santos

O C OSSOUNIFORM CROSSOVER
Assign 'heads' to one parent, 'tails' to the other
Flip a coin for each gene of the first child
Make an inverse copy of the gene for the second child
Inheritance is independent of positionp p

M. Santos

CROSSOVER OR MUTATION?CROSSOVER OR MUTATION?

Decade long debate: which one is better / necessary

Answer (at least rather wide agreement):Answer (at least, rather wide agreement):
– it depends on the problem, but in general, it is good to

have both
– both have another role
– mutation-only-EA is possible, xover-only-EA would not

work

M. Santos

CROSSOVER OR MUTATION?
Exploration: Discovering promising areas in the search space,
i e gaining information on the problemi.e. gaining information on the problem

Exploitation: Optimising within a promising area, i.e. using
information
There is co operation AND competition between themThere is co-operation AND competition between them
• Crossover is explorative, it makes a big jump to an area somewhere “in
between” two (parent) areas

• Mutation is exploitative, it creates random small diversions, thereby

M. Santos

Mutation is exploitative, it creates random small diversions, thereby
staying near (in the area of) the parent

CROSSOVER OR MUTATION?CROSSOVER OR MUTATION?

Only crossover can combine information from two
tparents

Only mutation can introduce new information (alleles)y ()
Crossover does not change the allele frequencies of the

l ti (th ht i t 50% 0’ fi t bit i population (thought experiment: 50% 0’s on first bit in
the population, ?% after performing n crossovers)
To hit the optimum you often need a ‘lucky’ mutation

M. Santos

A SIMPLE EXAMPLEA SIMPLE EXAMPLE

The Traveling Salesman Problem:

Find a tour of a given set of cities so that
h it i i it d l – each city is visited only once

– the total distance traveled is minimized

M. Santos

PERMUTATION REPRESENTATION
Encoding:
• Label the cities 1 2 nLabel the cities 1, 2, … , n
• One complete tour is one

permutation (e g for n =4 permutation (e.g. for n =4
[1,2,3,4], [3,4,2,1] are OK)

S h i BIG Search space is BIG:
for 30 cities there are 30!  1032

possible tours

M. Santos

REPRESENTATIONREPRESENTATION

Representation is an ordered list of city numbers
known as an order-based GA.

1) London 3) Dunedin 5) Beijing 7) Tokyo
2) Venice 4) Singapore 6) Phoenix 8) Victoria

CityList1 (3 5 7 2 1 6 4 8)CityList1 (3 5 7 2 1 6 4 8)
CityList2 (2 5 7 6 8 1 3 4)

M. Santos

CROSSOVER OPERATORS FOR CROSSOVER OPERATORS FOR
PERMUTATIONS

“Normal” crossover operators will often lead to
i d i ibl l tiinadmissible solutions

1 2 3 4 5

5 4 3 2 1

1 2 3 2 1

5 4 3 4 55 4 3 2 1 5 4 3 4 5

Many specialised operators have been devised
which focus on combining order or adjacency

M. Santos

which focus on combining order or adjacency
information from the two parents

CROSSOVERCROSSOVER

Crossover combines inversion and recombination:
* *

Parent1 (3 5 7 2 1 6 4 8)()
Parent2 (2 5 7 6 8 1 3 4)

Child (5 8 7 2 1 6 3 4)

This operator is called the Order1 crossover.

M. Santos

MUTATION FOR PERMUTATIONS
Normal mutation operators lead to inadmissible
solutionssolutions
– e.g. bit-wise mutation : let gene i have value j

h i h l k ld h k – changing to some other value k would mean that k
occurred twice and j no longer occurred

Therefore must change at least two values
Mutation parameter now reflects the probability Mutation parameter now reflects the probability
that some operator is applied once to the whole
t i th th i di id ll i h iti

M. Santos

string, rather than individually in each position

MUTATIONMUTATION

Mutation involves reordering of the list:

* *
Before: (5 8 7 2 1 6 3 4)

After: (5 8 6 2 1 7 3 4)

M. Santos

Number of cities is fixed

REFERENCESREFERENCES
Santos M., de la Cruz JM., Algoritmos genéticos. Reverté, 2005
Goldberg, D.E. Genetic algorithms in search, optimizacion and
machine learning Adisson Wesley MA 1989machine learning, Adisson-Wesley, MA, 1989
D. Beasley, D.R. Bull, Ralph R. Martin, An overview of genetic
algorithms: Part I and II. University Computing, 15, 1993 algorithms: Part I and II. University Computing, 15, 1993
(ralph.cs.cf.ac.uk/pub/papers/Gas/ga_overview1 y 2.ps)
Haupt RL, Haupt SE, Practical genetic algorithms. Wiley, 2004
Holland, JH, Adpatation in natural and artificial systems. U Michigan
Press, 1975
Mi h l i Z G ti Al ith + D t St t E l ti Michalewicz Z, Genetic Algorithms + Data Structures = Evolution
Programs. Springer Verlag, 1992
Mitchell M An introduction to genetic algorithms MIT Press 1998

M. Santos

Mitchell, M, An introduction to genetic algorithms. MIT Press, 1998
www.cs.cmu.edu/Groups/AI/html/repository.html

SOFTWARE REFERENCESSOFTWARE REFERENCES

MATLAB Genetic Algorithm and Direct Search
ToolboxToolbox
EVOCOM (http://pc-isa2.dacya.ucm.es/evocom
GOAL (freeware). Visual Basic
(www.geocities.com/geneticoptimization)(g g p)
Free software (C, C++, Visual Basic, Perl, …)
(www geneticprogramming com/ga/GAsofware html)(www.geneticprogramming.com/ga/GAsofware.html)
www.cs.cmu.edu/Groups/AI/html/repository.html

M. Santos

