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GENETIC ALGORITHMGENETIC ALGORITHM

“Genetic Algorithms are 
good at taking large,good at taking large, 

potentially huge search 
spaces and navigating 

them looking for optimalthem, looking for optimal 
combinations of things, 
solutions you might not 

th i fi d iotherwise find in a 
lifetime.”

S l t M- Salvatore Mangano
Computer Design, May 1995
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EVOLUTIONARY COMPUTATIONEVOLUTIONARY COMPUTATION
Evolutionary computation consists of machine 
learning optimization and classification paradigms learning optimization and classification paradigms 
that are roughly based on evolution mechanisms 
such as biological genetics and natural selectionsuch as biological genetics and natural selection

The EC field comprises four main areas:The EC field comprises four main areas:
– genetic algorithms

l ti  i– evolutionary programming
– evolution strategies
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– genetic programming.



EC PARADIGMS

EC paradigms differ from traditional search and p g
optimization ones in that EC paradigms:

1) Use a population of points in their search,
2)  Use direct “fitness” information, instead of function 

derivatives or other related knowledge, and ,
3)  Use probabilistic rather than deterministic transition 

rules.
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EC QUICK OVERVIEW

A.S. Fraser, 1950’s, Australia, biologist using 
computers to simulate natural genetic systems
J.D. Bagley (first used term GA in his 1967 Ph.D)J.D. Bagley (first used term GA in his 1967 Ph.D)
L.J. Fogel, Evolutionary programming, 1960’s
I  R h b  E l ti  t t  1960’I. Rechenberg, Evolution strategy, 1960’s
Latane, Particle swarm optimization (Social 
impact theory)
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GA QUICK OVERVIEW

J. Holland (1975), “Adaptation in natural and artificial 
systems”systems
DeJong’s dissertation on GAs, 1975
D  Goldberg  book “GA in search  optimization  and D. Goldberg, book “GA in search, optimization, and 
machine learning”, 1989 
Since 1985  interest explosionSince 1985, interest explosion
– International  Conferences

Scientific Journals– Scientific Journals
– Web resources
– Widely-used today in business  scientific and engineering 
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– Widely-used today in business, scientific and engineering 
circles

GA MAIN IDEAGA MAIN IDEA

Directed search algorithms based on the mechanics of biological Directed search algorithms based on the mechanics of biological 
evolutionevolutionevolutionevolution

An initial set of individuals evolve along generations by reproduction 
and mutation, to become the best individuals, the ones who survive.

M. Santos



GA CHARACTERISTICS

To understand the adaptive processes of natural 
systemssystems
To design artificial systems software that retains the 

b t  f t  trobustness of nature system
Typically applied to discrete optimizationy y
Attributed features:
– not too fastnot too fast
– good heuristic for combinatorial problems
Man  ariants  e g  reprod ction models  operators
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Many variants, e.g., reproduction models, operators

ADVANTAGESADVANTAGES
Concept is easy to understand
Modular  separate from applicationModular, separate from application
Supports multi-objective optimization
Good for “noisy” environments
Always gives an answer; answer gets better with Always gives an answer; answer gets better with 
time

An acceptable good solution in a reasonable time
At any stage there is a solution (maybe not the best but a 

d )
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good one)

Inherently parallel; easily distributed

MORE BENEFITSMORE BENEFITS
Many ways to speed up and improve a GA-
based application as knowledge about the pp g
problem domain is gained
Easy to exploit previous or alternate solutionsEasy to exploit previous or alternate solutions
Flexible building blocks for hybrid applications 
(Fuzzy+GA, GA+NN, etc)
Substantial history and range of useSubstantial history and range of use
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DISADVANTAGESDISADVANTAGES

You may not find the optimal solution
Th   l ti   h  t  t k  i t  t l  th  The  solution space has to take into account only the 
feasible solutions
Definition of the evaluation function that includes the 
knowledge of the problemknowledge of the problem
They are not specialized algorithms
– Application dependence

The success depends on the designer
M. Santos

The success depends on the designer



WHEN TO USE A GAWHEN TO USE A GA

Alternative solutions are too slow or overly 
complicated
Need an exploratory tool to examine new approachesNeed an exploratory tool to examine new approaches
Problem is similar to one that has already been 

f ll  l d b  i   GAsuccessfully solved by using a GA
Want to hybridize with an existing solutionWant to hybridize with an existing solution
Benefits of the GA technology meet key problem 

i t  
M. Santos

requirements 

APPLICATIONSAPPLICATIONS
Complex systems (N-P problems) for which an 

acceptable solution is enough

Optimization

acceptable solution is enough

Optimization
Searching
Parameters identification
Pattern recognitionPattern recognition
Machine learning
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…

FIELDSFIELDS
Robotics
PlanningPlanning
Optimization (circuits, controllers, neural networks, etc.)
Si l iSimulation
Hardware design and implementation
Data mining
IdentificationIdentification
etc
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SOME GA APPLICATION TYPESSOME GA APPLICATION TYPES
Domain Application Types 

Control gas pipeline, pole balancing, missile evasion, pursuit 

Design semiconductor layout, aircraft design, keyboard 
configuration, communication networks 

Scheduling manufacturing  facility scheduling  resource allocation Scheduling manufacturing, facility scheduling, resource allocation 

Robotics trajectory planning 

Machine Learning designing neural networks, improving classification 
algorithms, classifier systems 

Signal Processing filter design Signal Processing filter design 

Game Playing poker, checkers, prisoner’s dilemma 
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Combinatorial Optimization set covering, travelling salesman, routing, bin packing, 
graph colouring and partitioning 

 



SIMPLE GENETIC ALGORITHMSIMPLE GENETIC ALGORITHM

Holland’s original GA is now known as the 
simple genetic algorithm (SGA)
Other GAs use different:Other GAs use different:
– Representations
– Mutations
– Crossovers
– Selection mechanisms
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SIMPLE GENETIC ALGORITHMSIMPLE GENETIC ALGORITHM
INITIAL POPULATION GENERATION

for i = 0 to N generationsIt is just an for i = 0 to N generations

EVALUATION

j
algorithm to 

solve a 

REPRODUCTION (CROSSOVER)

PARENTS SELECTIONproblem

MUTATION

REPLACEMENT

i = i+1

REPLACEMENT

M. Santos
Best individual

GA COMPONENTSGA COMPONENTS

A problem to solve, and ...
Encoding technique       (gene, chromosome)

Initialization procedure                ( ti )Initialization procedure                (creation)

Evaluation function                 (environment)

Selection of parents               (reproduction)

G ti  t     Genetic operators    (mutation, recombination)

Parameter settings             (practice and art)
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g (p )

SIMPLE GA PSEUDO CODESIMPLE GA PSEUDO-CODE
{

initialize population;
evaluate population;
while TerminationCriteriaNotSatisfiedwhile TerminationCriteriaNotSatisfied
{

select parents for reproduction;select parents for reproduction;
perform recombination and mutation;

l t  l tievaluate population;
}

}
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}



THE GA CYCLE OF REPRODUCTIONTHE GA CYCLE OF REPRODUCTION

reproduction modification
children

p

parents
modified
children

population evaluation
evaluated children

deleted 
members

discard
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INITIAL POPULATIONINITIAL POPULATION
Population of n individuals (potential solutions)
Individual = data structure (string of characters or Individual = data structure (string of characters or 
chromosomes from an alphabet  )

CROMOSOME = a a a  a    a – CROMOSOME = a1 a2 a3 ... am,   ai  
– Chromosome: parameters to be optimized

Each element of the chromosome, ai, a gene
– Allele: value
– Locus: position in the string

Size: enough to cover the solution space
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Size: enough to cover the solution space

REPRESENTATION

Genotype space =
Variables to be optimized

Genotype space  
{0,1}LPhenotype space

Encoding 
(representation)(representation)

10010010

10010001

010001001
10010010

Decoding
(inverse representation)

011101001
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(inverse representation)

REPRESENTATIONREPRESENTATION

Chromosomes could be:
– Bit strings                                           (0101 ... 1100)
– Real numbers                       (43.2 -33.1 ... 0.0 89.2) Real numbers                       (43.2 33.1 ... 0.0 89.2) 
– Permutations of elements     (E11 E3 E7 ... E1 E15)

Li t  f l                          (R1 R2 R3  R22 R23)– Lists of rules                         (R1 R2 R3 ... R22 R23)
– Program elements                 (genetic programming)
– ... any data structure ...
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REPRESENTATIONREPRESENTATION

Binary string
– Easy operations
– Lowest cardinality of the alphabet (simples searching)
– Algorithms convergence proved
– Variants (BCD, Gray code, etc)( , y , )

Other types of representationsOther types of representations
– Different cardinality alphabets
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POPULATION INITIALIZATIONPOPULATION INITIALIZATION
SIZE:
• Start with moderate sized population (50-500)
• Population size tends to increase linearly with individual string length 

(not exponentially)

RANDOMLY:
• To cover all the spaceTo cover all the space
• To prove the algorithm

HEURISTICALLY (include promising values):HEURISTICALLY (include promising values):
• Assure the variety of solutions (do not skew population significantly)

A id th  t   f th  l ith
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• Avoid the premature convergence of the algorithm
• Include constraints

EVALUATIONEVALUATION
FITNESS FUNCTION
– Each individual is assigned a fitness measureEach individual is assigned a fitness measure

• How good it is as solution
• More chances of survivingMore chances of surviving

– The link between the GA and the problem it is solving
• SpecificSpecific

– Normalization (scale fitness values)
• Better discriminationBetter discrimination

M. Santos

REPRODUCTIONREPRODUCTION

PARENT SELECTION

CHROMOSOME MODIFICATIONCHROMOSOME MODIFICATION
– Genetic  operators:Genetic  operators:

• Crossover (recombination)
• Mutation

G ti  t  i ifi tl  h  ll l h 
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Genetic operators significantly enhance parallel search 
capabilities



PARENT SELECTIONPARENT SELECTION

Parents are selected at random with selection 
h  bi d i  l ti  t  h  chances biased in relation to chromosome 

evaluation

– Better individuals get higher chanceBetter individuals get higher chance
• Chances  proportional to fitness
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SELECTION
Implementation: roulette wheel technique

• Assign to each individual a part of the roulette wheel• Assign to each individual a part of the roulette wheel
• Spin the wheel n times to select n individuals

fitness(A) = 3
1/6 = 17%

fitness(A)  3

fitness(B) = 1A CB
fitness(C) = 23/6 = 50% 2/6 = 33%
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REPRODUCTION CYCLE
1. Select parents for the mating pool 

(size of mating pool = population size)(size of mating pool = population size)
2. Shuffle the mating pool
3. For each consecutive pair apply crossover with 

probability pc , otherwise copy parents
4. For each offspring apply mutation (bit-flip with 

probability pm independently for each bit)p y pm p y )
5. Replace the whole population with the resulting 

offspring
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offspring

CROSSOVER: RECOMBINATION

Choose a random 

1-POINT CROSSOVER
Choose a random 
point on the two 
parentsparents
Split parents at this 
crossover point
Create children by 
exchanging tails
Pc typically in range 
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c yp y g
(0.6, 0.9)



CROSSOVER  RECOMBINATIONCROSSOVER: RECOMBINATION
Crossover is a critical feature of genetic
algorithms:algorithms:

– It greatly accelerates search early in 
evolution of a population

– It leads to effective combination of – It leads to effective combination of 
schemata (subsolutions on different 
h )chromosomes)

– Often start with relatively high xover 
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y g
rate, and reduce it during the run

MUTATION: LOCAL MODIFICATION
Alter each gene independently with a probability pm 
p  is called the mutation ratepm is called the mutation rate
– Typically between 1/pop_size and 1/ chromosome_length

Usually held constant or increased during run (when – Usually held constant or increased during run (when 
fitness variability drops below some threshold)
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MUTATION  LOCAL MODIFICATIONMUTATION: LOCAL MODIFICATION

Before: (1  0  1  1  0  1  1  0)

After: (0  1  1  0  0  1  1  0)

Before: (1.38   -69.4   326.44   0.1)

After: (1.38   -67.5   326.44   0.1)

Causes movement in the search space (local or global)
Restores lost information to the population
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Restores lost information to the population

SURVIVOR SELECTIONSURVIVOR SELECTION
A new population is generated  each generation)
Population replacementPopulation replacement
– Generational GA

• Entire populations replaced with each iteration
– Steady state GAy

• A few members replaced each epoch
– Elitism: the best individual is copied into the next generation
– New individuals randomly generated 
– Generational gap: replace x percent (worst individuals)

M. Santos
Population typically remains the same size



TERMINATION CRITERIATERMINATION CRITERIA

Computational time
Number of generations
– Depends on the complexity of the problem– Depends on the complexity of the problem

When the solution converges to a enough good 
value (if known)
– Population member(s) with > specified fitnessp ( ) p

No change in max fitness in m generation
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ISSUESISSUES
Choosing basic implementation issues:
– representationp
– population size, mutation rate, ...

selection  deletion policies– selection, deletion policies
– crossover, mutation operators

Termination Criteria
Performance  scalabilityPerformance, scalability
Solution is only as good as the evaluation function 
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(often hardest part)

SGA SUMMARY

Representation Binary strings

Recombination N-point or uniform

Mutation Bitwise bit-flipping with fixed 
probability

Parent selection Fitness-Proportionate

Survivor selection All children replace parentsSurvivor selection All children replace parents

Speciality Emphasis on crossover
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p y p

SUMMARY OF GA PROCESSSUMMARY OF GA PROCESS
1. Select the initial population (usually randomly).
2. Select percent probability of crossover (often .6-.8) and of 

( f )mutation (often about .001).
3. Calculate the fitness value for each population member.
4 N li  fit  l  d  t  d t i  b biliti  f  4. Normalize fitness values and use to determine probabilities for 

reproduction.
5 Reproduce new generation with the same number of members  5. Reproduce new generation with the same number of members, 

using probabilities from 3.
6. Pair off strings to cross over randomly.
7. Select crossing sites (often 2) randomly for each pair.
8. Mutate on a bit-by-bit basis.
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9. If more generations, go to step 2.
10.If completed, stop and output results.



AN EXAMPLE AFTER GOLDBERG ‘89AN EXAMPLE AFTER GOLDBERG ‘89

Simple problem: max x2 over {0,1,…,31}
GA approach:
– Representation: binary code  e g  01101  13 (25)– Representation: binary code, e.g. 01101  13 (25)
– Population size: 4 individuals
– 1-point xover, bitwise mutation 
– Roulette wheel selection
– Random initialization

We show one generational cycle done by hand 
M. Santos

We show one generational cycle done by hand 

X2 EXAMPLE: SELECTION
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X2 EXAMPLE: CROSSOVER
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X2 EXAMPLE  MUTATIONX2 EXAMPLE: MUTATION
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THE SIMPLE GATHE SIMPLE GA
Has been subject of many (early) studies
– still often used as benchmark for novel GAs

Shows many shortcomings, e.g.
R t ti  i  t  t i ti– Representation is too restrictive

– Mutation & crossovers only applicable for bit-string & 
integer representations

– Selection mechanism sensitive for converging g g
populations with close fitness values

– Generational population model can be improved with 
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Generational population model can be improved with 
explicit survivor selection

REVIEW OF GA OPERATIONSREVIEW OF GA OPERATIONS
• Representation of variables
• Population sizePopulation size
• Population initialization
• Fitness calculation
• ReproductionReproduction
• Crossover
• Inversion
• Mutation
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• Mutation
• Selecting number of generations 

OTHER REPRESENTATIONS
Consider example problem,

where 127 is 01111111 and 128 is 10000000

The smallest fitness change requires change in every bit

Gray coding of integers (still binary chromosomes)
Gray coding is a mapping that means that small changes in the – Gray coding is a mapping that means that small changes in the 
genotype cause small changes in the phenotype (unlike binary 
coding)  “Smoother” genotype phenotype mapping makes life coding). Smoother  genotype-phenotype mapping makes life 
easier for the GA
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OTHER REPRESENTATIONS
Nowadays it is generally accepted that it is better to encode 

numerical variables directly asnumerical variables directly as
• Integers

Fl ti  i t i bl• Floating point variables

• Some software converts dynamic range and resolution 
into appropriate bit stringsinto appropriate bit strings

Diff t l h b t  ibl
M. Santos

• Different alphabets possible



INTEGER REPRESENTATIONSINTEGER REPRESENTATIONS
Some problems naturally have integer variables, e.g. 
image processing parameters 
Others take categorical values from a fixed set e.g. {blue,
green, yellow, pink}g , y , p }
N-point / uniform crossover operators work
Extend bit flipping mutation to makeExtend bit-flipping mutation to make
– “creep” i.e. more likely to move to similar value

R d  h i  (  t i l i bl )– Random choice (esp. categorical variables)
– For ordinal problems, it is hard to know correct range for creep, 

so often use two mutation operators in tandem 
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so often use two mutation operators in tandem 

REAL VALUED PROBLEMSREAL VALUED PROBLEMS
Many problems occur as real valued problems, e.g. 
continuous parameter optimization f :  np p
Illustration: Ackley’s function (often used in EC)

M. Santos

MAPPING REAL VALUES ON MAPPING REAL VALUES ON 
BIT STRINGS

z  [x,y]   represented by {a1,…,aL}  {0,1}L

• [x,y]  {0,1}L must be invertible (one phenotype per genotype)
• : {0,1}L  [x,y] defines the representation 

],[)2(
12

),...,(
1

0
1 yxaxyxaa j

L

j
jLLL 




 




O l  2L l  t f i fi it   t d

12 0j

Only 2L values out of infinite are represented
L determines possible maximum precision of solution
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High precision  long chromosomes (slow evolution)

ALTERNATIVE CROSSOVER ALTERNATIVE CROSSOVER 
OPERATORS

Performance with 1 Point Crossover depends on the 
order that variables occur in the representationp
– more likely to keep together genes that are near each 

otherother
– Can never keep together genes from opposite ends of 

string
– This is known as Positional Bias
– Can be exploited if we know about the structure of our 

problem  but this is not usually the case
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problem, but this is not usually the case



N-POINT CROSSOVER
Choose n random crossover points
Split along those pointsSplit along those points
Glue parts, alternating between parents
G li ti  f 1 i t ( till  iti l bi )Generalisation of 1 point (still some positional bias)
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O C OSSOUNIFORM CROSSOVER
Assign 'heads' to one parent, 'tails' to the other
Flip a coin for each gene of the first child
Make an inverse copy of the gene for the second child
Inheritance is independent of positionp p
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CROSSOVER OR MUTATION?CROSSOVER OR MUTATION?

Decade long debate: which one is better / necessary

Answer (at least  rather wide agreement):Answer (at least, rather wide agreement):
– it depends on the problem, but in general, it is good to 

have both
– both have another role
– mutation-only-EA is possible, xover-only-EA would not 

work
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CROSSOVER OR MUTATION? 
Exploration: Discovering promising areas in the search space, 
i e  gaining information on the problemi.e. gaining information on the problem

Exploitation: Optimising within a promising area, i.e. using 
information
There is co operation AND competition between themThere is co-operation AND competition between them
• Crossover is explorative, it makes a big jump to an area somewhere “in 
between” two (parent) areas

• Mutation is exploitative, it creates random small diversions, thereby 
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Mutation is exploitative, it creates random small diversions, thereby 
staying near (in the area of ) the parent



CROSSOVER OR MUTATION?CROSSOVER OR MUTATION?

Only crossover can combine information from two 
tparents

Only mutation can introduce new information (alleles)y ( )
Crossover does not change the allele frequencies of the 

l ti  (th ht i t  50% 0’   fi t bit i  population (thought experiment: 50% 0’s on first bit in 
the population, ?% after performing n crossovers)
To hit the optimum you often need a ‘lucky’ mutation
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A SIMPLE EXAMPLEA SIMPLE EXAMPLE

The Traveling Salesman Problem:

Find a tour of a given set of cities so that 
h it  i  i it d l  – each city is visited only once

– the total distance traveled is minimized
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PERMUTATION REPRESENTATION
Encoding:
• Label the cities 1  2    nLabel the cities 1, 2, … , n
• One complete tour is one 

permutation (e g  for n =4 permutation (e.g. for n =4 
[1,2,3,4], [3,4,2,1] are OK)

S h  i  BIG  Search space is BIG: 
for 30 cities there are 30!  1032

possible tours
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REPRESENTATIONREPRESENTATION

Representation is an ordered list of city numbers 
known as an order-based GA.

1) London     3) Dunedin        5) Beijing     7) Tokyo
2) Venice      4) Singapore     6) Phoenix   8) Victoria

CityList1 (3   5   7   2   1   6   4   8)CityList1 (3   5   7   2   1   6   4   8)
CityList2 (2   5   7   6   8   1   3   4)
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CROSSOVER OPERATORS FOR CROSSOVER OPERATORS FOR 
PERMUTATIONS

“Normal” crossover operators will often lead to 
i d i ibl  l tiinadmissible solutions

1 2 3 4 5

5 4 3 2 1

1 2 3 2 1

5 4 3 4 55 4 3 2 1 5 4 3 4 5

Many specialised operators have been devised 
which focus on  combining order or adjacency 
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which focus on  combining order or adjacency 
information from the two parents

CROSSOVERCROSSOVER

Crossover combines inversion and recombination:
*             *

Parent1 (3   5   7   2   1   6   4   8)( )
Parent2 (2   5   7   6   8   1   3   4)

Child (5   8   7   2   1   6   3   4)

This operator is called the Order1 crossover.
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MUTATION FOR PERMUTATIONS
Normal mutation operators lead to inadmissible 
solutionssolutions
– e.g. bit-wise mutation : let gene i have value j

h i    h  l  k  ld  h k – changing to some other value k  would mean that k 
occurred twice and j no longer occurred 

Therefore must change at least two values
Mutation parameter now reflects the probability Mutation parameter now reflects the probability 
that some operator is applied once to the whole 
t i  th  th  i di id ll  i  h iti
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string, rather than individually in each position

MUTATIONMUTATION

Mutation involves reordering of the list:

* *
Before:       (5   8   7   2   1   6   3   4)

After:          (5   8   6   2   1   7   3   4)
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Number of cities is fixed
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