

Image E	nhancement
Blurring of edges may be co	ntrolled by selective mean filtering:
$g(x, y) = \begin{cases} \mu(x, y), i \\ f(x, y) \end{cases}$	$f\left f(x,y) - \mu(x,y)\right > T,$
• where T is a threshold,	
this is useful in salt and p in this applications, the cat to use only the eight neight	epper noise, ntral pixel at(x,y) is usually left out ıboring pixel in computing the
mean.	
Copyright RMR / RDL - 1999.1 PEE583	- Processamento Digital de Imagens 8

\mathbf{D}		Image	e En	hanc	ement	t	
3x3 N	MASK FO	R IMAGE S	HARP	ENING			
Lapla	cian:	Subtrac	ting La	placian:	Unshar	p Masking	:
ΓΟ	1 0	0	-1	0]	-1/8	-1/8	-1/8
1 -	-4 1	-1	5	-1	-1/8	2	-1/8
	1 0	0	-1	0	-1/8	-1/8	-1/8
R							
$ \zeta $							
© Copyrigh	it RMR / RDL - 199	9.1	PEE5830 - P	rocessamento [Digital de Imagens		14

]	Image Enhancement	
Ś	EXAMPLES OF 3X3 MASK OPERATIONS:	
	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} * \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & -2 & -1 & -2 \\ 1 & -1 & 0 & -1 \\ 1 & -2 & -1 & -2 \\ 0 & 1 & 1 & 1 \end{bmatrix}$	0 1 1 1 1 0
	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} * \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & -1 & -1 \\ -1 & 3 & 2 & 3 \\ -1 & 2 & 1 & 2 \\ -1 & 3 & 2 & 3 \\ 0 & -1 & -1 & -1 \end{bmatrix}$	$\begin{array}{c} 0 \\ -1 \\ -1 \\ -1 \\ 0 \end{array}$
	© Copyright RMR / RDL - 1999.1 PEE5830 - Processamento Digital de Imagens	

У Л]	Image Enhancement
V D]	While "ideal" filtering is possible on computers, it is not desirable as it results in ringing artifacts around edges in the image.
V N	•	Exponential and Butterworth filters provide a smoother roll off, and produce smooth images with no ringing artifacts.
V	,]	Exponential: $H(u,v) = \exp\left[-\left(\frac{D(u,v)}{D_o}\right)^n\right]$. $D(u,v) = \sqrt{u^2 + v^2}$
]	Butterworth: $H(u,v) = \frac{1}{1 + \left[\frac{D(u,v)}{D_o}\right]^{2n}}.$
$\overline{\mathbb{N}}$	1) 	Note: n is the order of the filter; higher-order filters provide faster roll-off.)
V	00	opyrigin rank / roc + 1999. i Precessariento Dignal de imagens 26

Image Enhancement

- Directional "sector" filters may be designed to enhance, extract, or remove features at preferred orientations, by virtue of the rotational property of the Fourier transform.
- While space domain operations affect local pixel values and features, frequency domain operations affect the image globally.

© Copyright RMR / RDL - 1999.1

While normally we are concerned with the magnitude spectrum to a large extent, the phase spectrum is also important. Phase has been shown to be associated with edge information to a larger extent than the magnitude of the frequency components.

PEE5830 - Processamento Digital de Imagens

\sum	Image Enhancement
K	HOMOMORPHIC FILTERING
R	$f(x,y) = i(x,y).r(x,y) \qquad F(u,v) \neq I(u,v).R(u,v)$
R	i(x,y): illumination component (very low frequency); r(x,y): reflectance component (medium-to-high frequency).
R	To separate the two components for filtering, take the logarithm: $z(x, y) = \ln[f(x, y)] = \ln[i(x, y)] + \ln[r(x, y)]$
\mathbb{R}	Z(u,v) = I(u,v) + R(u,v)
\mathbb{R}	$S(u,v) = H(u,v).Z(u,v) \Longrightarrow g(x,y) = \exp[s(x,y)]$
\mathbb{R}	$\begin{array}{c} f(x,y) & \hline \\ \hline \\ 0 & Copyright RMR / RDL - 1998.1 \end{array} \xrightarrow{FFT} \begin{array}{c} H(u,v) & \hline \\ PEE5830 - Processamento Digital de Imagens \end{array} \xrightarrow{32}$

