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Image Restoration

• Image enhancement techniques yield "better 
looking" images satisfying some subjective
criteria.

• Image restoration may be defined as image quality 
improvement under objective evaluation criteria
(least squares, MMSE - minimum mean-squared
error) to find the best possible estimate to the
original unknown image from the given degraded 
image.

• Restoration requires precise information about the 
degrading phenomenon, and analysis of the 
system that produced the degraded image.
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Image Restoration
LSI (linear shift-invariant) Degradation Model:

The restoration problem is:
Given g and some knowledge of H, f, and n,
find the best possible estimate of f.

),(),(),(),(
),(),(*),(),(

vuNvuFvuHvuG
yxnyxfyxhyxg

+=
+=

nHfg += Hf g+

n

© Copyright RMR / RDL - 1999.1 PEE5830 - Processamento Digital de Imagens 3

Matrix and Vector Representation of Images

• A sampled quantized image may be represented as a matrix 
or a 2D array of numbers:

• The image has M rows, each with N elements (N columns). 
• Matrix methods may then be used in the analysis of images.
• However, images are not merely arrays of numbers certain 

constraints are imposed on the image matrix due to the 
physical properties of the image.

(Reference: E.L. Hall, “Computer Image Processing and  
Recognition”, Academic Press, New York, 1979.)
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Matrix and Vector Representation of Images

1. Nonnegativity and upper bound:

2. Finite energy:

3. Smoothness:
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Matrix and Vector Representation of Images

The image matrix may be converted to a vector by “row 
ordering”:

where fi = [ f(i,1) f(i,2). . . f(i,N)]’ is the ith row vector. 

Column ordering may also be performed.

Energy (inner product)
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Matrix and Vector Representation of Images

If the image elements are considered to be random variables, 
the image may be seen as a sample of a stochastic process, 
and characterized by:

mean   

covariance matrix

correlation matrix

E { }: statistical expectation (average) operator.  
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Matrix Representation of Linear Systems Relationship

Considering the 1D linear shift-invariant system for 
simplicity, we have the input-output relationship given by the 
convolution integral.

• The limits depend upon causality, the nature of h (IIR, FIR), 
and whether the convolution desired is linear or circular.

• While causality is an inherent property of physical 1D signal 
processing systems, it is not always relevant in the 2D case 
as blurring typically occurs in all directions.

• The limits also depend on the reference origin chosen, 
whether at the sample or at the center of the signal.
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Matrix Representation of Linear Systems Relationship

1. IIR (Infinite Impulse Response)

Consider the systems to be causal, with input starting at t = 0.
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Matrix Representation of Linear Systems Relationship

2. FIR (Finite Impulse Response, Non-causal)
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Matrix Representation of Linear Systems Relationships

3. Periodic or Circular Convolution

T > (T1 + T2) to avoid wrap-around errors;
T, T1, and T2 are the durations of g, f, and h, respectively;
subscript p indicates periodic versions of the signals.
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Matrix Representation of Linear Systems Relationships

Convolution as Matrix Operation

1. IIR  

H is Toeplitz-like. There will be zeros in the lower-left portion of H if 
h has fewer samples than f and g: H is then said to be banded.
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Matrix Representation of Linear Systems Relationships

Convolution as Matrix Operation

2. FIR  

H is banded and Toeplitz-like. 
Each row (except the first) is a right-shift of the previous row.
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Matrix Representation of Linear Systems Relationships

3. Periodic or Circular Convolution

But

and                                             by periodicity.

Therefore

and so on.
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Matrix Representation of Linear Systems Relationships
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• Each row of  Hp is a right-shift (circular-shift) of the previous 
row.

• Hp is square.
• Hp  is a circulant matrix.
• An important property of a circulant matrix is that it is 

diagonalized by the DFT.
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Matrix Representation of Linear Systems Relationships

Consider the general circulant matrix

Let

Then, Wk, k = 0, 1, 2,…,N - 1, are the N distinet roots of unity, 
as Wkn = 1.

Now consider
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Matrix Representation of Linear Systems Relationships

i.e., λ(k)W(k) = CW(k),
were W(k) = [ 1Wk W2k…W(N-1)]’.
• Thus λ(k) is an eigenvalue and W(k) is an eingenvector of the 

circulant matrix C.
• Since there are N values Wk, k = 0, 1,…N-1, that are distinct, 

there are N distinct eigenvectors W(k), which may be written 
as tha N x N matrix

that is related to the DFT.
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Matrix Representation of Linear Systems Relationships

• The eigenvalue relationship may be written as:

where all the terms are N X N matrices, and Λ is a diagonal 
matrix whose terms are equal to λ(κ), κ=-0,1,…, N-!.

• Thus a circulant matrix is a diagonalized by the DFT matrix W.
• Returning to periodic convolution, since Hp is circulant, we 

have  

CWW =Λ

1−Λ= WWC
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Matrix Representation of Linear Systems Relationships

Interpretation:
• W-1 fp is the DFT of fp ;
• multiplication of this by D corresponds to point-by-point 

transform-domain filtering whit the DFT of h;
• W corresponds to the inverse DFT.

Classification:

k = 0, 1,…,N - 1, are the DFTs of fp and gp;
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Matrix Representation of Linear Systems Relationships

We defined the eigenvalues of the circulant matrix using the 
first row of Hp, i.e. hp(-j). Thus the diagonal elements are:

Since hp is periodic, summation from 0 to - (N-1) is equal to 
summation from 0 to (N-1). Thus -j may be replace by j:

Let the DFT of hp(j) be
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Matrix Representation of Linear Systems Relationships

The frequency-domain representation of circular convolution 
is

which may be evaluated rapidly using the FFT.

It could further be shown that 2D periodic convolution may be 
represented by a block-circulant matrix, which is 
diagonalized by the 2D DFT.

),()()( kFkHNkG =
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Matrix Representation of Linear Systems Relationships

Block-Circulant Matrices
For two digitized images f(x,y) and h(x,y) of size AxB and 
CxD, respectively, extended images of size MxN may be 
formed by padding the functions with zero.

and

The extended functions fe(x,y) and he(x,y) are periodic 
functions in 2D with M and N in the x and y directions. 





−≤≤−≤≤
−≤≤−≤≤

=
110
1010),(

),(
MyBorNxA
ByandAxyxf

yxfe





−≤≤−≤≤
−≤≤−≤≤

=
110
1010),(

),(
MyDorNxC
DyandCxyxh

yxhe

© Copyright RMR / RDL - 1999.1 PEE5830 - Processamento Digital de Imagens 22

Matrix Representation of Linear Systems Relationships

• The convolution of the two functions is given by:

for x = 0,1, 2,…,M-1, and y = 0,1, 2,…, N - 1.
• The result is periodic with the same period (M x N) as of 

fe(x,y) and he(x,y).
• Overlap of the individual convolution periods is avoided by 

choosing M ≥ (A+C-1) and N ≥ (B+D-1).
• The complete discrete degradation model is given by

where ηe(x,y) is an M X N extended discrete noise image. 
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Matrix Representation of Linear Systems Relationships

• Let f, g, and n be MN-dimensional vectors formed by 
attacking the rows of the M x N functions fe(x,y), ge(x,y), and 
ηe(x,y).

• Now, the degradation model may be written as 

where f, g; and n are of dimension MN x 1,  
and H is of dimension MN x MN.
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Matrix Representation of Linear Systems Relationships
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Hj is a circulant matrix, and the blocks of H are subscripted in 
a circular manner; H is a block-circulant matrix.
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Matrix Representation of Linear Systems Relationships

• The degradation model expression looks simple. 
• However, a direct solution of this expression to obtain f is a 

monumental processing task for images of practical size.
• For example, if M = N = 512, H is of size 262,144 x 264,144. 
• To obtain f directly would require the solution of a system of 

262,144 simultaneous linear equations.
• Fortunately, the complexity of this problem can be reduced 

considerably by taking advantage of the circulant properties  
of H.   
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Matrix Representation of Linear Systems Relationships

Diagonalization of block-circulant Matrices
Let 

Define a Matrix W of size MN x MN, 
containing M2 partitions of size N x N.
The imth partition of W is

For i,m = 0,1, 2,…,M - 1.
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Matrix Representation of Linear Systems Relationships

WN is an N X N matrix with elements

for k,n = 0, 1, 2,…, N-1.
The inverse matrix W-1 is also of MN x MN
With W2 partitions of size N x N.
The imth partitions of W-1, symbolized as W-1(i,m), is

for i,m = 0, 1, 2,…, M-1.
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Matrix Representation of Linear Systems Relationships

The matrix WN
-1 has elements

for k,n = 0, 1, 2,…, N - 1.
Direct substitution of elements of W and W-1 shows that 

Where Ι is the MN x MN identity matrix.
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Matrix Representation of Linear Systems Relationships

If H is a block-circulant matrtix, it can de show that

or

where D is a diagonal matrix whose elements D(k,k) are related 
to the DFT of he(x,y).

the transpose of H is.
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Orthogonal Functions and Transforms

In signal analysis, it is often useful to represent a signal x(t) over 
the t0 to t0 + T by an expansion of the form.

Where the functions ∅ m(t) are mutually orthogonal, i.e.,

if C = 1 the functions are orthonormal.
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Orthogonal Functions and Transforms

The coefficients am may

i.e., am is the projection of x(t) on to∅ m(t).
The set {∅ m(t)} is said to be complete or closed if there exists no
square-integrable function x(t) for which

If this is true, x(t) should be a member of the set
When the set {∅ m(t)} is complete, it is said to be an orthogonal 
basis, and may be used for accurate representation of signals, 
e.g., the Fourier series
Note: x(t) and the ∅ m(t)‘s must be square-integrable.
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Orthogonal Functions and Transforms

With the signal or image expressed as an MN x 1 vector or column 
matrix, we may consider representation of transformations using
MN x MN orthogonal matrices:

representing

i = 1, 2,…,MN. 
For images of size M x N. the transformation matrices will be of size

MN x MN, leading to computational difficulties.
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Orthogonal Functions and Transforms

General representation of image transforms:

where g(m, n, k, l) is the forward transform kernel and h(m, n, k, l) is 
the inverse transform kernel.

The kernel is said to be separable if g(m, n, k, l) = g1 (m, k) 92 (n, l), 
and symmetric in addition if 91 and g2 are functionally equal.

Then, the 2D transform may be computed in two simpler steps: ID
row transforms followed by 1D column transforms.

).,,,(),(1),(
1

0

1

0
lknmgnmf

N
lkF

N

n

N

m
∑∑

−

=

−

=

=

),,,,(),(1),(
1

0

1

0
lknmhlkF

N
nmf

N

t

N

k
∑∑

−

=

−

=

=

© Copyright RMR / RDL - 1999.1 PEE5830 - Processamento Digital de Imagens 34

Orthogonal Functions and Transforms

The 2D Fourier transform kernel

is separable and symmetric.
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Orthogonal Functions and Transforms

The 2DDFT may be written as

where f is the NxN image matrix, and W is a symmetric NxN 
matrix with , (only N distict values).
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Orthogonal Functions and Transforms

The DFT matrix is symmetric and unitary:

I.e., the rows/columns are mutually orthogonal
Then, 

A number of transforms such as the Fourier, Walsh, Hadamard, and
Discrete Cosine may be expressed as F = A f A.

The transform matrices may be decomposed into products of 
matrices with fewer nonzero elements, reducing redundancy and
computational requirements.

The DFT matrix may be factored into a product of 2 in N sparse and 
diagonal matrices, which may be considered to be the basis of the
FFT algorithm
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Orthogonal Functions and Transforms

The Walsh-Hadamard Transform
The orthogonal, complete set of walsh functions defined over 

interval 0 ≤ x ≤ 1 is given by the iterative relationship (in 1D);

where [n/2]is the integral part of n/2.
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Orthogonal Functions and Transforms

φn iS generated by compression of ¢[n/2] into its first half and ±¢[n/2] into 
its second half, and is even/odd as n.

To generate discrete Walsh functions, the number of samples
(equispaced) should be 2n to satisfy the above requirement.

Walsh functions are ordered by the number of zero-crossings in the 
interval (0,1), called sequency.

If the Walsh functions with the number of zero-crossings ≤ (2n - 1) are
sampled with N = 2n uniformly-spaced points, we get a square 
matrix representation, which is orthogonal with rows ordered with 
increasing number of zero-crossings.
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Orthogonal Functions and Transforms

For N = 8:

The major advantage of the Walsh transform is that the kernel 
has integers with values +1 and -1 only, i.e., the transform 
involves only addition and subtraction of the image pixels.
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Orthogonal Functions and Transforms

Except for the ordering of rows, discrete Walsh matrices are 
equivalent to Hadamard matrices of rank 2n, which are easily.

Then, letting , the Walsh-Hadamard transform 
may be expressed as 

applications: image coding, sequency filtering, pattern 
recognition. 
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Orthogonal Functions and Transforms

Also known as the Principal Component, Hotelling transform, or
the Eigenvector transform (Ref: Hall).

This transform is based on statistical properties of the given 
image, which i3 treated as a random vector X.

Mean vector

Covariance matrix:

σij = E{(xi - µI)(xj - µj)}; µj = E{xi}; I,j = 1, 2,…,n.
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Orthogonal Functions and Transforms

NOTE:
Two random vectors Xi and Xj are

• Uncorrelated if E {X’I Xj} = E {X’I} E{Xj}
(then Σ is diagonal and R is the identity matrix} 

• Orthogonal if E {X’I Xj} = 0
(if E {X’I} = 0 or E {X’I} = 0, orthogonal = uncorrelated)

• Statistically independent if p(Xi,Xj) = p(Xi)p(Xj)
(then Xi and Xj are uncorrelated).
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Orthogonal Functions and Transforms

A random vector X may be represented without error by 
deterministic transformation of the form:

where A = [A1 A2 . . . An], A ≠ 0.
The matrix A may be considered to be made up of n.
linearly-independent column vectors, called the basis vector 

which span n-dimensional space containing X.
Let A be orthogonal, i.e.,

if follows that A’A = Ι or A-1 = A’.
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Orthogonal Functions and Transforms

Then; Y A’X = Σn
i=1 A’

ixi..
Each component of Y contributes to the representation of X.
Suppose we wish to the use m<n components of Y.
The omitted components of Y may be replace with other values 
bi,i = m+1, . . . ,n:
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Orthogonal Functions and Transforms

The components of Y are mutually uncorrelated:

Since the eigenvalues λi are equal to the variances of yi, selection of 
the largest eigenvalues implies selection of maximum-variance
(information content) components.

Applications: Image coding and compression, feature extraction.
Difficulties:In computing the eigenvectors/values of large covariance 

matrices.
A transformation is valid only for the corresponding set of images.
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