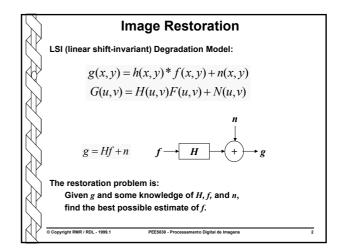
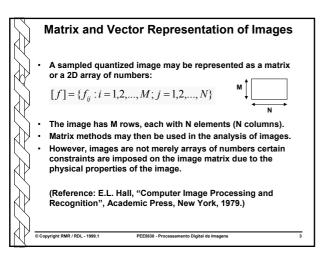
Image Restoration

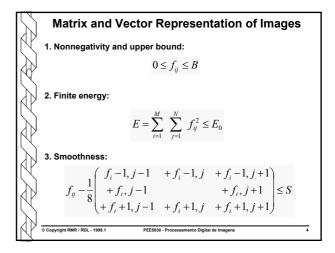
- Image enhancement techniques yield "better looking" images satisfying some subjective criteria.
- Image restoration may be defined as image quality improvement under objective evaluation criteria (least squares, MMSE - minimum mean-squared error) to find the best possible estimate to the original unknown image from the given degraded image.
- Restoration requires precise information about the degrading phenomenon, and analysis of the system that produced the degraded image.

PEE5830 - Processamento Digital de Imagens

© Copyright RMR / RDL - 1999.1





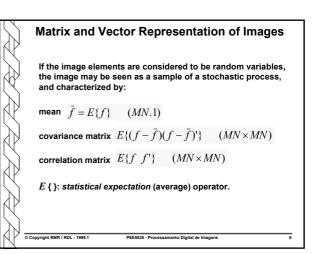


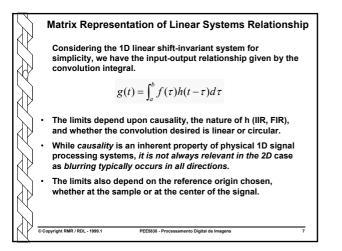
Matrix and Vector Representation of Images
The image matrix may be converted to a vector by "row
ordering":

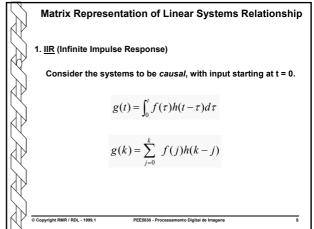
$$f = [f^1 f^2 ... f^M]$$
' $(MN \times 1)$
where f = [f(i,1) f(i,2)... f(i,N)]' is the ith row vector.
Column ordering may also be performed.
Energy $E = f' f = \sum_{i=1}^{MN} f_i^2$ (inner product)

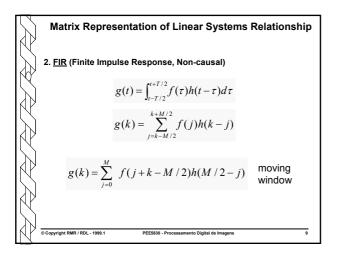
PEE5830 - Pro

to Digital de Ir

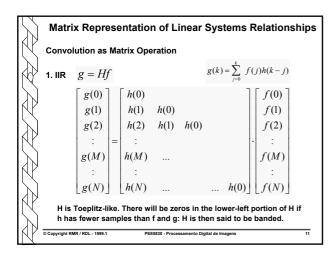


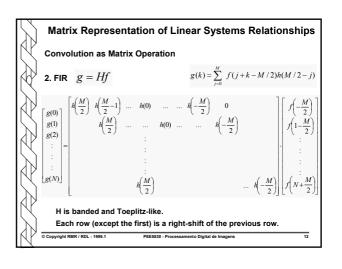


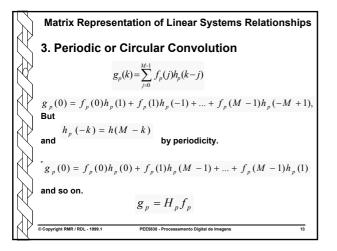


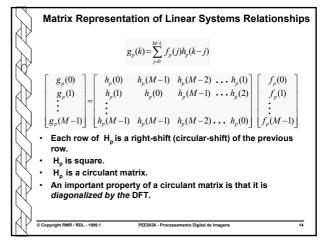


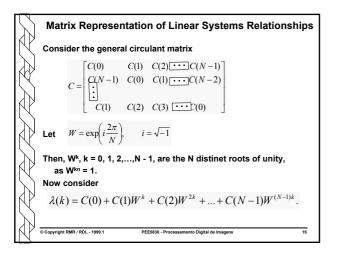
\sum	Matrix Representation of Linear Systems Relationships										
K	3. Periodic or Circular Convolution										
R	$g_{P}(t) = \int_{0}^{T} f(\tau)h(t-\tau)d\tau$										
\mathbb{A}											
\mathbf{b}	$T > (T_1 + T_2)$ to avoid wrap-around errors; $T, T_1, \text{ and } T_2$ are the durations of $g, f, \text{ and } h$, respectively;										
\mathbb{S}	subscript <i>p</i> indicates periodic versions of the signals.										
R	$g_p(k) = \sum_{j=0}^{M-1} f_p(j) h_p(k-j)$										
\mathbb{A}											
$\left \right\rangle$	© Copyright RMR / RDL - 1999.1 PEE5830 - Processamento Digital de Imagens 10										

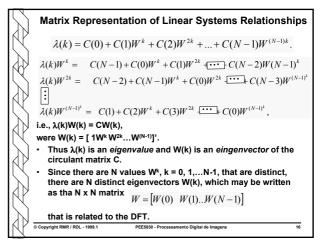


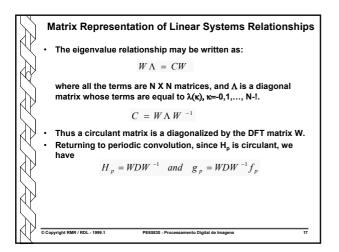


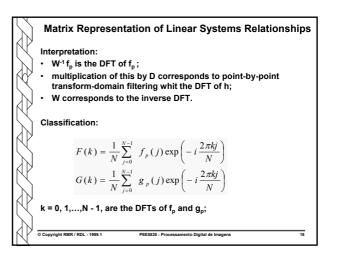












Matrix Representation of Linear Systems Relationships
We defined the eigenvalues of the circulant matrix using the
first row of H_p, i.e. h_p(j). Thus the diagonal elements are:

$$D_{kk} = \sum_{j=0}^{N-1} h_p(-j) \exp\left(i\frac{2\pi k j}{N}\right).$$
Since h_p is periodic, summation from 0 to - (N-1) is equal to
summation from 0 to (N-1). Thus -j may be replace by j:

$$D_{kk} = \sum_{j=0}^{N-1} h_p(j) \exp\left(-i\frac{2\pi k j}{N}\right).$$
Let the DFT of h_p(j) be $H(k) = \frac{D_{kk}}{N}$.

 Matrix Representation of Linear Systems Relationships

 The frequency-domain representation of circular convolution is

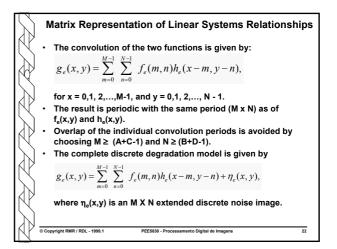
 G(k) = N H(k) F(k),

 which may be evaluated rapidly using the FFT.

 It could further be shown that 2D periodic convolution may be represented by a block-circulant matrix, which is diagonalized by the 2D DFT.

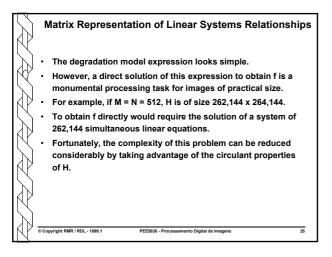
 0 Copyright RMR / RDL - 1999.1

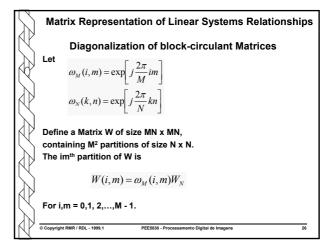
У	Matrix Representation of Linear Systems Relationships												
Y	Block-Circulant Matrices												
Þ	For two digitized images f(x,y) and h(x,y) of size AxB and CxD, respectively, extended images of size MxN may be formed by padding the functions with zero.												
Ŷ	$f_e(x,y) = \begin{cases} f(x,y) & 0 \le x \le A - 1 & and & 0 \le y \le B - 1 \\ 0 & A \le x \le N - 1 & or & B \le y \le M - 1 \end{cases}$												
\mathbb{N}	and												
\mathcal{A}	$h_e(x,y) = \begin{cases} h(x,y) & 0 \le x \le C-1 and 0 \le y \le D-1 \\ 0 & C \le x \le N-1 or D \le y \le M-1 \end{cases}$												
\mathbf{k}	The extended functions $f_o(x,y)$ and $h_o(x,y)$ are periodic functions in 2D with M and N in the x and y directions.												
\mathbf{b}	© Copyright RMR / RDL - 1999.1 PEES830 - Processamento Digital de Imagens 21												

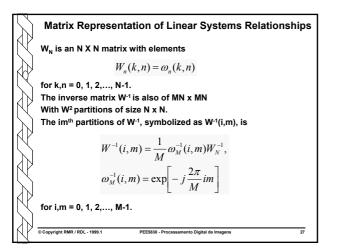


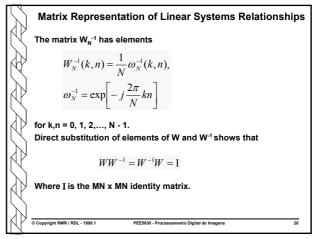
M	Matrix Representation of Linear Systems Relationships
R R R	 Let f, g, and n be MN-dimensional vectors formed by attacking the rows of the M x N functions f_e(x,y), g_e(x,y), and η_e(x,y). Now, the degradation model may be written as g = Hf + n
K	where f, g; and n are of dimension MN x 1, and H is of dimension MN x MN.
	$H = \begin{bmatrix} H_0 & H_{M-1} & H_{M-2} & \dots & H_1 \\ H_1 & H_0 & H_{M-1} & \dots & H_2 \\ H_2 & H_1 & H_0 & \dots & H_3 \\ \vdots & & & \vdots \\ H_{M-1} & H_{M-2} & H_{M-3} & \dots & H_0 \end{bmatrix}$
\mathbb{Y}	© Copyright RMR / RDL - 1999.1 PEE5830 - Processamento Digital de Imagens 23

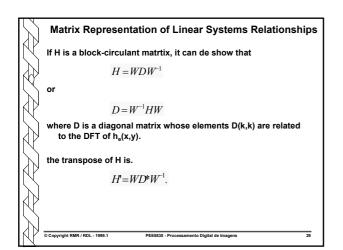
\mathbf{R}	Matrix Representation of Linear Systems Relationship										
A A	$H_{j} = \begin{bmatrix} h_{e}(j,0) & h_{e}(j,N-2) & h_{e}(j,N-2) & \dots & h_{e}(j,1) \\ h_{e}(j,1) & h_{e}(j,0) & h_{e}(j,N-1) & \dots & h_{e}(j,2) \\ h_{e}(j,2) & h_{e}(j,1) & h_{e}(j,0) & \dots & h_{e}(j,3) \\ \vdots & & \vdots \\ h_{e}(j,N-1) & h_{e}(j,N-1) & h_{e}(j,N-3) & \dots & h_{e}(j,0) \end{bmatrix}$										
	$H_{i} \text{ is a circulant matrix, and the blocks of H are subscripted in a circular manner; H is a block-circulant matrix.}$										
	© Copyright RMR / RDL - 1999.1 PEE5830 - Processamento Digital de Imagons 24										

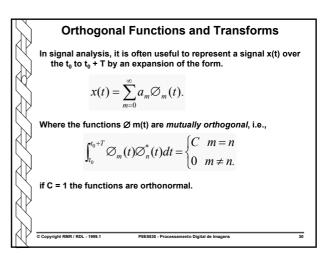


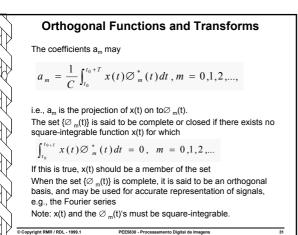


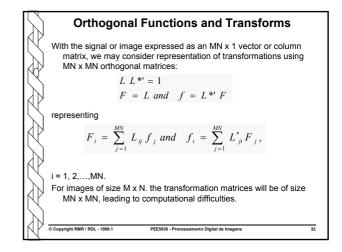




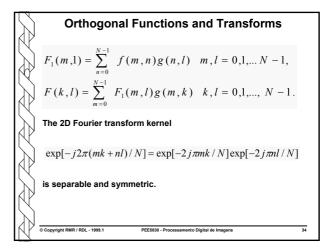




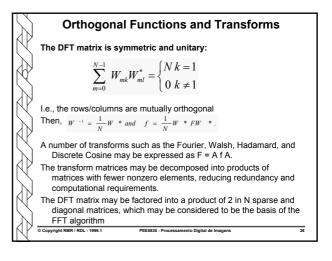


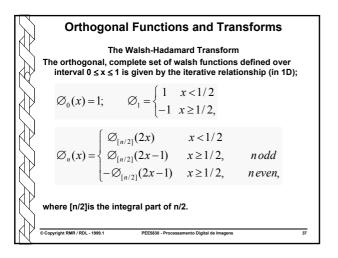


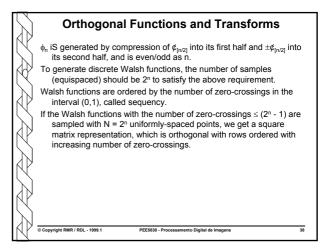
Д	Orthogonal Functions and Transforms
K	General representation of image transforms:
R	$F(k,l) = \frac{1}{N} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} f(m,n)g(m,n,k,l).$
R	$f(m,n) = \frac{1}{N} \sum_{k=0}^{N-1} \sum_{t=0}^{N-1} F(k,l) h(m,n,k,l),$
R	where g(m, n, k, l) is the forward transform kernel and h(m, n, k, l) is the inverse transform kernel.
\mathbb{N}	The kernel is said to be separable if $g(m, n, k, l) = g_1(m, k) g_2(n, l)$, and symmetric in addition if g_1 and g_2 are functionally equal.
\mathcal{D}	Then, the 2D transform may be computed in two simpler steps: ID row transforms followed by 1D column transforms.
\mathcal{D}	
IN I	© Copyright RMR / RDL - 1999.1 PEE5830 - Processamento Digital de Imagens 33



Л	Orth	nogo	nal	Fur	nctio	ons	and	l Tra	ansf	orm	s	
K	The 2DDFT may be written as $F = \frac{1}{N} W f W$											
R	where f is matrix w											
		$\begin{bmatrix} W_0 \\ W_0 \\ W_0 \end{bmatrix}$	W_0 W_1 W_2	W_0 W_2 W_4	W_0 W_3 W_6	W_0 W_4 W_0	W_0 W_5 W_2	W_0 W_6 W_4	$\begin{bmatrix} W_0 \\ W_7 \\ W_6 \end{bmatrix}$			
\mathbb{R}		W_0 W_0 W_0	W_3 W_4 W_5	W_6 W_0 W_2	W_1 W_0 W_2	W_4 W_0 W_4	W_7 W_4 W_1	W_2 W_0 W_6	W_5 W_4 W_3			
R		$\begin{bmatrix} W_0 \\ W_0 \end{bmatrix}$	$W_6 W_7$	$W_4 \\ W_6$	$W_4 \\ W_6$	$egin{array}{c} W_0 \ W_4 \end{array}$	$W_6 \\ W_3$	$W_4 \\ W_2$	$\begin{bmatrix} W_2 \\ W_1 \end{bmatrix}$			
\mathbb{P}	© Copyright RMR / RDI	L - 1999.1		PEE	5830 - Pro	cessament	to Digital c	ie Imagen	8			35







Л	Orthogo	nal	Fun	octio	ons	and	d Tr	ans	form	s	
K	For N = 8:										
\mathbb{A}	[1	1 1	1	1	1	1	1	1			
\mathbb{A}	1	1	- 1	- 1	- 1	- 1	1	1			
	1	1 1	- 1	- 1	1	- 1	- 1	1			
R	1	-1 -1 -1	-1 1	1 - 1	1 - 1	1 1	1 - 1	-1 1			
\mathbb{A}	1	-1	1	- 1	1	- 1	1	-1			
R	The major advant has integers w involves only a	/ith va	alues	+1 a	nd -1	only	, i.e.,	the t	ransfo	rm	
\mathbb{A}	© Copyright RMR / RDL - 1999.1		PEE5	830 - Pro	cessamen	to Digital	de Imager	าร			39

