
PAD Cluster: An Open, Modular and Low Cost
High Performance Computing System

Volnys Borges Bernal1, Sergio Takeo Kofuji2, Guilherme Matos Sipahi3,
Alan G. Anderson4, Marcio Lobo Netto5

1,2,3,5 Laboratório de Sistemas Integráveis, Escola Politécnica da USP
Av. Prof. Luciano Gualberto, Trav. 3, n. 158, São Paulo, SP, Brazil

{volnys,kofuji,sipahi,lobonett@lsi.usp.br}

4 Elebra Defesa e Controles Ltda.
Rua Bogaert 326, Vila Vermelha, São Paulo, SP, Brazil

{agilmor@elebra.ind.br}

Abstract
This work presents the PAD Cluster, the result of PAD

Elebra Project. It was built on COTS (commodity off-the
shelf) components. It is shown the hardware and software
architecture of the cluster. Some performance results are
presented in the implementation of an user level
communication library. Cluster management tools for a single
point of control are also presented.

Keywords High performance computing, Cluster of
workstations, parallel processing

 I. INTRODUCTION

High performance computing systems implemented
with a cluster of workstations and personal computers are
becoming more and more popular. This kind of systems is
being used nowadays in several academic and industrial
computing centers around the world. The NASA Beowulf
[BEC95] [www.bewoulf.org] class of high performance
computing systems is a good example of this approach.

This work presents the PAD Cluster, a high
performance system implemented with this philosophy.

The PAD Cluster is being industrialized by Elebra and
was developed with technical support from LSI-EPUSP and
financial support from FINEP (Financiadora de Estudos e
Projetos). The development of this system was based on the
SPADE-II Project [www.spa.lsi.usp.br] that has been
developed at LSI-USP with support from FINEP.

In its default configuration, the PAD Cluster is
composed by eight processing nodes, one access
workstation and one administration workstation, as shown
in figure 1. Each processing node has two 333MHz
Pentium II processors. All processing elements

(workstations and nodes) are interconnected by a Fast-
ethernet network. The processing nodes are also
interconnected by a Myrinet [BOB95] [www.myri.com]
high performance network.

Node01

Node02

Node03

Node04

Node05

Node06

Node07

Node08

adm

acc01

Pr
im

ar
y

N
et

w
or

k

H
ig

h
Pe

rf
or

m
an

ce
 N

et
w

or
k

External Network

PAD
Cluster

Fig. 1. A high level view of the PAD Cluster

The Primary Network is intended to be used as a general
purpose communication infrastructure. The purpose of the
High Performance Network is to allow a high bandwidth
and a low latency communication for data exchange among
the processes of a parallel application.

Users log in the cluster through the Access Workstation
(acc01). This is done in two ways: locally, with graphical
interface based on the CDE (Common Desktop
Environment) or remotely, (from outside the cluster
environment) with telnet. Users edit, compile and submit
their jobs through the Access Workstation (acc01). The
Access Workstation stores the users’ home directories in a
RAID level 5 storage system and export them to the nodes
using NFS protocol. It is possible to have more than one
Access Workstation in the PAD Cluster.

The Administration Workstation (adm) is reserved to the
system manager and operator. It also has a graphical
interface. From this workstation, it is possible to have a
single point of control of the PAD cluster. It is possible to
observe the node consoles, to access the nodes by their
serial consoles, to configure and reconfigure the cluster
parameters, to monitor the cluster nodes, to define cluster
partitions, to add users to the cluster, to execute programs
in a selected set of nodes, and so on. Several tools have
been developed in order to perform this.

The Linux operating system is being used in all nodes.
It provides a IEEE POSIX open Unix interface [LEW91]
and an open software platform that allow the addition of the
necessary functionality.

Several proprietary and commercial tools were
integrated into the system environment. These tools may be
classified in “Configuration and Operation Tools”, “User
Interface and Utilities” and “Development Tools” as shown
in figure 2.

In fact, the great challenge in this project was to
integrate the several system components in order to form
one integrated system. Not only hardware components, but
also software ones, as described in the following sections.

 II. PAD CLUSTER ARCHITECTURE

A. System Architecture

Figure 3 presents the PAD Cluster Architecture. There
are 4 interconnection systems: one Fast-Ethernet switched
network for standard communication services; a high
performance Myrinet network [BOB95] for parallel
program communication; an experimental synchronization
network to improve the performance of synchronization and
collective operations; and, finally, the serial communication
lines which connect each Processing Node to the
Administration Workstation.

Synchronization
Hardware

Myrinet
switch

Processing
Node

Processing
Node

Processing
Node

Processing
Node

Processing
Node

Processing
Node

Processing
Node

Processing
Node

Administration
Workstation

Access
Workstation

Multi-serial

to external network

Fast-Ethernet
Switch

Fig. 3. PAD Cluster Architecture

Configuration & Operation User Interface and Utilities

Clustermagic
Configuration
& Replication

Multiconsole Cluster
Partitioning
Operation

CDE
Windows
Interface

LSF
Job

Scheduling

PAD-ptools
Parallel UNIX

utilities

Development Tools

Compilers
GNU

C, C++
F77

Portland
F77, F90

HPF

Tools Libraries
Portland
Profiler

Portland
F77. F90,
Debugger BLAS,

BLACS

MPI
MPICH

PAD Cluster Environment

Monitoring
System

POSIX
Unix

Interface

FULL

Fig. 2. PAD Cluster Environment

MPICH-FULL

Myrinet
API/BPI

LaPack
ScalaPack

B. Node Architecture

Each PAD Cluster node has two 333 MHz Intel Pentium
II processors with 512 Kbytes of L2 cache, 512 Mbytes of
memory, Fast-Ethernet PCI controller, SCSI PCI controller,
Myrinet PCI controller and an Lm78 controller, as shown in
figure 4. The Lm78 makes information about board
voltages, system temperature, processor fan RPM and
chassis fan RPM available.

Intel Pentium II
333 MHz

Intel Pentium II
333 MHzRAM

PCI Bridge

Myrinet
Controller

Fast Ethernet
Controller

SCSI
Controller

Lm 78

Fig. 4. Node Architecture

 III. COMMUNICATION LIBRARIES

The PAD Cluster provides TCP/IP protocol stack over
the Primary Network and High Performance Network. For
the High Performance Network, there are two additional
communication libraries: FULL and MPICH-FULL.

FULL [GER98a] [GER98b] is a user level
communication library that allows one user process to
access directly the physical communication interface,
bypassing the TCP/IP protocol stack. This approach avoids
the huge overhead imposed by the TCP/IP protocol stack
and the operating system calls overhead, providing a low
latency and high bandwidth communication. The
implementation was based on Cornell’s UNET [WEL97]
architecture that was used as a basic communication layer.
Over this layer was implemented another layer providing a
reliable communication with flow control.

Performance of Myrinet with MPICH-FULL
2 processes (1 process per node)

Two 333 MHz dual nodes

0

10

20

30

40

50

60

0 200000 400000 600000 800000 1000000 1200000

Size of Package in bytes

M
by

te
s/

s

Fig. 5. Internode communication

The MPICH-FULL is implemented over the MPICH
1.1.1 distribution which is an implementation of the MPI
(Message Passing Interface) [PAC97]. The communication
between nodes was directly implemented over the FULL

library providing low latency and high bandwidth
communication. This library exploits completely the SMP
architecture characteristics, implementing internode
communication by message passing and intranode
communication by shared memory mechanism.

Figure 5 shows the MPICH-FULL communication
performance between two processes, each one running on a
different node.

Figure 6 shows the MPICH-FULL communication
performance between two processes running in a same
node, using the SMP support.

Performance of Myrinet with MPICH-FULL
Shared Memory (2 processes in one node)

One 333 MHz dual node

0
10
20
30
40
50
60

0 200000 400000 600000 800000 1000000 1200000

Size of package in bytes

M
by

te
s/

s
Fig. 6. Intranode communication

Finally, figure 7 shows the performance of MPICH-
FULL communication performance among 4 processes in 2
nodes, where there are two processes per node.

Performance of Myrinet with MPICH-FULL
4 processes (2 processes per node)

Two 333 MHz dual nodes

0

10
20

30
40

50

60

0 200000 400000 600000 800000 1000000 1200000

Size of Package in bytes

M
B

yt
es

/s

Fig. 7. Mixed intra/internode communication

Besides this implementation, there are other
developments of enhanced versions of MPICH undergoing
at LSI-USP, mostly trying to improve the collective
performance operations using software and/or hardware
assisted solutions.

 IV. SYNCHRONIZATION HARDWARE

The synchronization subsystem that is being developed
uses FPGA (Field Programmable Gate Array)
programmable logic and is based on PAPERS [DIE96]. The
main advantage of this approach is the possibility of “on the
fly” reprogramming [HOR98]. The first implementation has
used the standard 8 bits parallel port and provides support
for data communication and synchronization, besides a
global time (wall clock). More details of this subsystem
may be obtained from [TOR97] [TOR98].

 V. CLUSTER CONFIGURATION AND NODE REPLICATION

There are two important problems related to the
installation and configuration task that must be addressed in
‘cluster of workstations’ (COW) systems. One of them is to
assure that each node (or workstation) has the same
environment, as kernel, utilities and configuration. The
other one is to make the installation and configuration task
easier and faster. This includes operating system
installation (kernel, modules, patches, packages, etc.) and
configuration (kernel options, boot options, network,
resolution, trusted relations, local and remote file system
mounting, welcome messages, services and so on). This is
not a problem for one node, but how is it possible to assure
that this manual task will be correctly done in all nodes
while keeping consistency? How long would it take to
install and configure completely each node?

For the PAD system, there is a set of developed tools
that helps the system manager in (a) the initial node
configuration, (b) system reconfiguration when necessary
and (c) assure that all nodes have the same environment
(kernel, configuration and software). The set of these tools
is called clustermagic.

A. Cluster Configuration

There are a lot of settings that must be done in the
configuration of a node. These settings consist in the
modification of several files. Clustermagic interacts with
the system manager to get the cluster configuration
information (node names, primary network, high
performance network, external network, node disk
partitioning, remote mountings, node MAC addresses,
domain name, DNS servers, etc.) in order to create the node
configuration files automatically.

Figure 8 shows the files that are created for each node
and some other used in the administration workstation.

 cluster.confcluster magicoperator

hosts

hosts.equiv

rhosts

fstabnsswitch.conf

resolv.conf

ifcfg-lo

profile

inittab issue

issue.net

motd

HOSTNAME

lilo.conf

exports

network

ifcfg-eth0

node
commun
files

node
specific
files

bootptab

DNS server files

adm
files

generated files

Fig. 8: Clustermagic tool and the created files

The clustermagic creates automatically the DNS server
configuration files for the PAD cluster and the bootptab file
which is used by the BOOTP server in the replication
process.

B. Node Replication

Node replication means to install completely one node
based on the replication of another node, called womb
node. The womb image is a compressed file with the file
hierarchy of the node.

A clustermagic replication diskette was developed to
assist this task. It is a Linux environment specially designed
to boot the Linux operating system and execute the
replication task. The interaction with the operator is done in
the serial console that is shown in a window in the
administration workstation and also by the node display
that shows some messages informing the current step.

When the node is booted with the replication diskette,
the diskette boot sector is loaded and the boot program
reads the compressed kernel and loads it into the memory.
Then, the compressed root file system is loaded into a
ramdisk and the kernel initialization is started. After that,
the node sends a BOOTP [CRO85] [WIM93] request and
the administration workstation answers with its
identification and some other information (IP address,
broadcast address, network address, default gateway, node
name, domain name, DNS server and search list). The node
network interface and the host name are configured. At the
end of the operating system initialization, a script shows
two options to the operator: single user shell or replication.
If “single user shell” option is selected, a new shell is
started for the operator. If “replication” option is selected,
the system reads the cluster configuration information
stored in the administration workstation and starts the node
replication. First, the disk is partitioned. The partitions are
initialized (mkfs and mkswap) and the partitions with file
systems are mounted. Then, in the replication step, the
womb image is copied to the local file system. After some
minutes, the node configuration files (previously generated
by clustermagic) stored in the administration workstation
are copied to the local file system. Finally, the boot sector is
initialized and the local file systems are dismounted. At this
moment, the node is completely configured and the
shutdown script is started. The new node is ready to be
booted and will be completely operational.

Notice that this procedure requires that the operator
inserts the boot diskette, resets the node and selects the
replication option. The replication procedure is an
automatic process and takes about 12 minutes, including the
booting and shutting down, for a total file system size of
700 Mbytes. This also allows a small replacement time in
the event of a node failure.

 VI. CLUSTER PARTITIONING AND JOB SCHEDULING

The cluster partitioning tool allows the operator to
group the nodes. These node groups are called cluster
partitions. Figure 9 illustrates the cluster partitioning tool
function. The following information is held for each cluster
partition: name (the partition name), description (a message

with a description of the purpose of the partition), nodes
(the included nodes), users (the users that are allowed to
access the partition nodes), state (it may be active or
inactive), and goal (the partition goal).

N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N10 N11N 0

Cluster partitioning tool

N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N10 N11N 0

P 1 P 2 P 3

Fig. 9. Example of cluster partitioning

The access into each partition is restricted only to those
users that are defined by the operator. This is possible
because the tool interacts with PAM (Pluggable
Authentication Modules). A partition may be in an active or
inactive state. Sometimes the operator would like to
perform some maintenance in the partition. Then, it may be
marked as inactive and its entire configuration is
maintained. It may be marked active again without the
necessity to reconfigure it. There are three possibilities for
goal: LSF, MPI and OTHER. If LSF (a job scheduler
system) is chosen, the tool will automatically create the
necessary configuration files to the LSF. In this case, LSF
will be responsible for the resource management for that
partition. If MPI is chosen, the tool will automatically
create the MPI node files. Figure 10 gives an example of
the role of the job scheduler and the node partition tool in a
cluster.

L S F

N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N 1 0 N 1 1N 0

P 1 P 2 P 3

JOBJOB JOB

MPI programseq. program

Fig. 10. Example of job scheduling over one partition

There is a graphical interface that allows the operator to
perform the partition configuration. This interface is
integrated in the Xadmin and allows the operator to create
and configure a partition as shown in figure 11. The
operator may assign a node to the created partition by
dragging and dropping the node from the “unassigned
partition” to the recently created partition.

There are some user utilities that allow to consult about
cluster partition configuration. The cluster partition
configuration is used by other utilities, like a monitoring
tool, UNIX parallel tools, and an operational tool when
performing cluster operations.

Fig. 11. Cluster partition configuration with Xadmin

The job scheduling tool used in the PAD cluster is the
LSF, a commercial software that allows the user to submit
jobs to the cluster and to monitor it. It has also integration
for MPI applications.

 VII. OPERATION TOOLS

The operation tools allow the operator to maintain the
PAD cluster operational. There are two developed tools: the
multiconsole and the Xadmin.

A. Multiconsole

The multiconsole permits the operator to access the
node console from the administration workstation using the
graphical interface. The node consoles are redirected to the
serial line. The administration workstation has a multiserial
board that connects the serial console from each node. The
multiconsole presents a window console for each node, as
shown in figure 12.

Fig. 12. The multiconsole interface

B. Xadmin tool

The Xadmin tool allows to partition the cluster, to restart
and halt a node, to send messages to users, to update
configuration files and to execute specific commands in
graphically selected cluster nodes. The graphical interface
of Xadmin is shown in figure 13.

Fig. 13. Xadmin tool

There is a related tool that shows the operational state of
of the cluster nodes, shown in figure 14. This state is
always verified by the Xadmin tool before activating some
remote operation.

Fig. 14. A view of the node operational state

 VIII. PARALLEL UNIX TOOLS

In order to provide easy cluster operation by the users
and operators, it was developed a set of Unix parallel tools.
These utilities allow, for instance, to copy some files from
the access workstation to a set of nodes or to a specific
partition. Notice that these utilities are integrated to the
partitioning tools.

 IX. CLUSTER MONITORING

The monitoring tool has been designed in order to
provide facilities to observe diverse features of this parallel
computer, allowing its user/manager to have a better view
about how the computation is being conducted. Two main
aspects have been considered here. First, the ability to
visualize the complete PAD Cluster, including the
processing nodes and the communication network. This is
important because it shows the current state of all
processing and communication resources, and, therefore, it

shows how well they are being used, i.e., the quality of the
balance. The second reason for the usage of this monitor is
to go inside the application for a deeper understanding
about how well is being performed the parallel
computation.

The architecture of this tool is based on a master-worker
concept, with a master console (manager) implementing all
the facilities for control and user interaction, and a set of
workers (agents) conducting the sensoring job. These
agents are SNMP based and some of them have been
extended to provide more specific information. The console
is a Java tool, designed to be available as application and as
applet running in a Web Browser. The console concept is
fully based on the exploitation of fine multithread
parallelism.

The monitoring system has been designed to offer the
following features:

a) to provide an efficient way to observe different
variables of PAD Cluster:

• through the configuration of agent features
(sensoring and control);

• through an appropriate visualization of the
information got from agents.

b) to allow the user interaction through a graphical
interface integrating all its functionalities:

• this interface will be provided as an applet,
allowing therefore access through web
browsers.

c) to use standards in its implementation:
• programming language: JAVA
• internet protocol: HTTP
• monitoring protocol (console - agents

intercommunication): SNMP
The monitoring tool assists the system manager and

final user in their jobs. It provides facilities to observe and
control the PAD Cluster, aiming the improvement of the
resources usage. Among the features that can be monitored
are:

• inside each node: information about the operating
system; total, available and used memory; total,
available and used swap memory; partitions: total,
available and used area; information about TCP/IP;
information about CPU usage; user processes;
system usage; information about the main board;
temperature and fan.

• fast-ethernet network: bandwidth; latency.
• myrinet network: bandwidth usage.
• system: power supply; no-break autonomy; rack

door state.

 X. DEVELOPMENT ENVIRONMENT

The choice of the tools for the cluster obeyed some
rules: (a) the compilers should be native and standard; (b)
the compilers should have a debugger and, if possible, a
profiler as accessory tools, and (c) the use of the compilers
with other tools available in the market. The presence of
features different from the standard and the availability of
precompiled sequential libraries should also be considered.

As C and C++ from GNU (GCC and G++) are standard
for the Linux community, they were chosen to be our
standard tools. With the Gnu C Compilers, the gdb (GNU
debugger tool) and DDD, a graphical interface to gdb, are
installed.

The choice of the Fortran compiler was more difficult.
There were four different possibilities (NAG Fortran, NAS
Fortran, Portland Group Fortran and Absoft Fortran). Two
of them (NAG Fortran and NAS Fortran) were not native,
so they were discarded. To decide which compiler should
be used, the second and the third items had to be
considered. The analysis of these two packages is presented
below.

The Portland Group Fortran is a package that includes a
Fortran77 (PGF77) and a Fortran90 compilers (PGF90), as
well as a High Performance Fortran compiler (PGHPF). It
also includes a graphical profiler (PGPROF) and a
debugger (PGDBG). This package can also be used with
the VAMPIR profiler and with the TotalView parallel
debugger. The Portland Group Package does not provide
any precompiled mathematical library.

The Absoft Fortran is a package that includes a
Fortran77 (PGF77) and a Fortran90 compilers. It also
includes a graphical debugger and a set of precompiled
sequential mathematical libraries. It does not provide a
graphical profiling tool.

Both tools are very similar. Because of the graphical
profiling tool and the HPF compiler availability the
Portland Group package was chosen.

The following libraries were compiled with our choices
of compilers to be used: MPICH, BLAS, BLACS, LaPack
and ScaLaPack.

Three other choices of compilers are available in the
system. As g77 (GNU Fortran77 compiler) is free, it is also
available in the system. The package of Portland Group

Fig. 15. The Monitoring System

compilers provides, with a small difference in the cost, C
and C++ compilers (PGCC and PG++) that are also
available on the system.

There are two tools that can be added to the system:
TotalView debugger and VAMPIR profiler. These tools
have recently been ported to Linux and have been made
available lately. At present the ratio cost/benefit of the
addition of these tools is being studied, because of its high
cost, especially for the debugger.

 XI. CONCLUSIONS

High performance communication and high
performance processing elements are the main components
of a high performance parallel system. However, it is very
important in order to have a production quality system to
have tools also for the installation, administration and
management and to help the user on his job. This work has
presented some of these tools and their basic mechanisms.
It has also shown some details of the communication
libraries as well as some performance figures.

The parallel version of RAMS, a weather forecast
application, is being optimized to run over the PAD Cluster
[MEN99]. For this application, the cluster has shown good
price-performance ratio.

 XII. ACKNOWLEDGMENTS

We would like to thank the PAD Cluster development
team from LSI-EPUSP and Elebra Company.

We would also like to thank FINEP for supporting this
work.

 XIII. REFERENCES

[BEC95] BECKER, J. D.; et al. BEOWULF: A parallel
workstation for scientific computation. Proceedings.
International Conference on Parallel Processing, 1995.

[BOB95] BOBEN, N. J.; COHEN, D. et al. Myrinet:a Gigabit-per-
second local area network. IEEE Micro. pp29-35, Feb.
1995

[CRO85] CROFT, W. J.; GILMORE, J Request For Comments
#951: Bootstrap Protocol., 1985.

[DIE96] DIETZ, H. G. A fine-grain Parallel Architecture Based
on Barrier Synchronization. Proceedings of the
International Conference on Parallel Processing.
Pp247-50. August 1996.

[GER98a] GEROMEL, Paulo A.; KOFUJI, Sergio T. Avaliação
do U-NET em Clusters com Rede Myrinet. In: X
Simpósio Brasileiro de Arquitetura de Computadores
– Processamento de Alto Desempenho. Anais. Buzios,
RJ. 1998. pp. 119-128.

[GER98b] GEROMEL, Paulo A. Protocolos leves de
comunicação para sistemas de alto desempenho. São
Paulo: Escola Politécnica da USP, 1998 (MSC
Thesis).

[LEW91] LEWINE, D. POSIX Programmer’s Guide. O’Reilly &
Associates, 1991

[MEN99] MENDES, C.; PANETTA, J. Selecting Directions for
Parallel RAMS Performance Optimization. In:

Symposium on Computer Architecture and High
Performance Computing, 11, 1999. Proceedings.

[PAC97] PACHECO, P. S. Parallel Programming with MPI.
Morgan Kaufmann Publishers, 1997

[TOR97] TORRES, Martha X.; KOFUJI, Sergio T. The barrier
synchronization impact on the MPI programs
performance using a cluster of workstations.
International Symposium on Parallel Architecture,
Algorithms and Networks. Proceedings. Taipei.
Taiwan, ROC, 1997.

[TOR98] TORRES, Martha X.; KOFUJI, Sergio T. The Influence
of Barrier Synchronization on the MPI Programs
Performance Using the AP 1000 Multicomputer. 16th

IASTED International Conference on Applied
Informatics; Garmisch-Partenkirchen, Germany,
Proceedings. 1998. pp 334-336.

[HOR98] HORTA, Edson; KOFUJI, Sergio T. Using a
reconfigurable switch to improve MPI performance.
In: JCIS’98. Proceedings, Vol. III. North Carolina,
EUA. pp 66-69.

[NET98] NETTO, Marcio L. Development of High Performance
Parallel Graphical Applications with Efficient Parallel
Processing and Adaptive Techniques, Ph.D. Thesis,
Shaker Verlag, 1998.

[WEL97] WELSH, M. et al. ATM and Fast Ethernet Network
Interface for user-level communication. In:
Proceedings of High Performance Computer
Architecture 3. San Francisco, Feb. 1997

[WIM93] WIMER, W. Internet Request For Comments #1542:
Clarifications and Extensions for the Bootstrap
Protocol. 1993.

