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ABSTRACT 

This paper discusses aspects of the simulation of a memory 
evolutive system (MES) by means of an artificial neural 
network. We address here the issues concerning the minimum 
requirements that a neuron model should fulfill in order that the 
network would be capable of expressing the categories 
underlying the MES. We conclude that Izhikevitch’s formal 
neuron has sufficient dynamical properties to achieve these 
requirements. 

 
INTRODUCTION 

Brain and neural mathematical modeling are important 
issues today for neuroscience and related research areas. They 
help us testing ideas about microscopic and mesoscopic 
processes in the central nervous system. It seems tantalizing to 
simulate the brain in a reasonable level of accuracy; however it 
is realistic and desirable to construct models with increasing 
degree of fidelity in its capacity of describing the neural 
processes underlying the behavioral and cognitive phenomena.  

It has been discussed that traditional models present 
serious limitations making them inadequate for nervous system 
and brain simulation [4]. These limitations range from the 
lacking of sufficient dimensionality to the loss of important 
dynamic properties [5]. Furthermore, semantic properties are 
usually quite difficult, if not impossible, to be considered in 
traditional simulations. 

Category Theory [15] provides a framework for the study 
and simulation of complex, evolutive systems and their 
emergent properties and dynamic behaviors. It has been 
employed in the construction of networks composed of sub-
networks associated to distinct sensors and operating in a 
suitable coordinated fashion, such that their interconnections 
can adapt to provide knowledge coherence. This produces a 
representation of semantics mapped in the network [7]. 
However, this model due to M. Healy (1999) [6], uses the 
category theory rather doing logical deductive inference, 

mapping sensor primitives as symbols in a modified ART 
network (Adaptive Resonance Theory).  

We propose, instead, to use the memory evolutive system 
(MES) of Ehresmann and Vanbremeersch (2007) [3], which 
employs category theory in a more adequate form to model 
perceptual processes and cognition.  

MEMORY EVOLUTIVE SYSTEM  
The basis of this model lays in a hierarchical evolutive 

system defined using categories. A category is no more than a 
graph (called its underlying graph) of nodes (objects) and links 
(relations) and an internal composition law on this graph, 
associating to each path in this graph its composite, satisfying 
the axioms of associativity and identity. 

A graph is not a sufficient representation for complex, 
evolutive systems, hence categories, that are more constrained, 
are more expressive than graphs, as they allow the 
representation of complex objects comprised of more simple 
parts, and this is a base for the formation of hierarchy, a 
fundamental property in complex systems. 

Taking the system at a given time, one can observe its state 
category, as the snapshot denoting how the parts of the system 
are interrelated at that time. This state category evolves in time 
by a series of complexifications implemented by partial 
functors that can add or remove nodes, join patterns of nodes 
and links into a more complex object or break these patterns. 

The complex objects of a given level k+1 (called the 
colimit, or inductive limit) are composed of pattern of objects 
belonging to levels <= k. This process can be iterated at each 
complexification, generating more and more complex objects. 

One can question the need for hierarchy, as the system 
could be reduced to the base level, ignoring the colimits. 
However, by the Multiplicity Principle [15], if the system 
contains multifold objects (having the same colimit); this leads 
to the formation of complex links, that are lost on a reductionist 
break-up of the system (see Fig. 1). 
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A MES can be defined as a hierarchical evolutive system over a 
continuous time scale, with a hierarchical evolutive sub-system, 
called the memory, with the same time scale that develops over 
time by the process of complexification. The records in the 
memory also develop in a hierarchical fashion, leading to more 
complex records and even the formation of a semantic memory. 

The MES has no central regulating mechanism, instead it 
has a hierarchical network of partial regulatory organs, called 
co-regulators (CRs) that are sub-systems with specific functions 
and its own timing, serving to collect information, select and 
implement responses, and evaluate the result of these 
procedures, at least locally. They have differential access to the 
memory as they are also organized hierarchically. 

The CRs operate stepwise performing successive actions: 
(a) Internal observation: formation of an internal 

representation of the environment, called landscape, with 
partial information received at that date; 

(b) Regulation: selection of objectives and admissible 
procedures to implement them, sending commands to the 
effectors and forming an anticipated landscape; 

(c) Control: at the end of each step, it evaluates the final 
results and takes part to their storage in the memory at the 
beginning of the next step; 

The global procedure is the sum of the procedures of each 
CR. Eventually, the various CRs can have conflicting 
procedures, which may cause fractures in their previsions. 
However, higher order CRs, with longer periods of activity, 
have a priority when resolving conflicts between strategies. 

One possible application of the MES is the study of the 
neural system, using the Memory Evolutive Neural System 
(MENS), an extension of the MES imbued with special 
properties to deal with networks of neurons and category 
neurons (cat-neurons). 

CATEGORY NEURONS 
The basis for modeling the neural system lies in neurons 

and the synapses between them, forming an intricate graph 
indicating the state of the system by the activity (instantaneous 

firing frequency) of the neurons and the strengths of the 
synapses (probability of propagating activation). Some models 
also include a propagation delay for the synapses. 

To recognize the various features in the environment and 
better adapt to them, the neurons firing together can form 
assemblies that are patterns to represent complex mental 
objects. In some cases there is a coordination neuron which 
binds the assembly and is activated synchronously with the 
assembly. 

However, most of the times, this neuron can't be found. In 
these cases, learning takes place only by reinforcing the 
strengths of the synapses in the assembly, according to Hebb's 
rule [8] or some variant. Experimental studies [2] indicate that 
many assemblies can lead to the same outputs, and the same 
item or process can activate several more or less similar 
assemblies depending on the context. 

In the Memory Evolutive Neural System (MENS), a 
conceptual object, called category-neuron (cat-neuron), is 
introduced to model the class of these assemblies activated by 
the same item. This multifold dynamic object can be viewed as 
a “higher order” neuron, or a “mental object”, but it is activated 
by a physical event, namely the activation of any of the neural 
assemblies it represents (possibly non-connected). This process 
can be iterated obtaining cat-neurons for patterns of cat-
neurons, representing synchronous hyper-assemblies. 

The MENS is then defined as a memory evolutive system 
over the lifetime of the animal, which has for the first 
hierarchical level the evolutive sub-system Neur, generated by 
the graph of neurons, synapses and synaptic paths, where the 
synapses are labeled links containing the synaptic strength and 
the propagation delays. The higher hierarchical levels are 
obtained by a category of cat-neurons and the links between 
them (see Fig. 2). 

 

 
 
When dealing with cluster of links between assemblies, the 

propagation delay of the cluster is defined as the maximum of 
the propagation delays of the links in the cluster and strength of 
the cluster as an increasing function of the strengths of its links. 

The strength of complex links is calculated like any 
composite path, by adding the propagation delays and 
multiplying the strengths of the simple links composing it. 
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Fig. 1: The Multiplicity Principle: when two patterns have the
same colimit, complex links emerge as new properties of the
system 
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Fig. 2: Cat-neurons in the MENS 
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SIMULATING THE MES 
The MES [3] is a mathematical model of an open self-

organizing system. Concerning the MES implementation, it is 
necessary to choose a neuron model coherent with the 
dynamical aspects required for its operation. Such a neuron 
model have been already suggested in [3] as a cat-neuron, but 
in rather theoretical terms. Here we are proposing the use of a 
mathematical neuron dynamic model as a candidate to a 
computational implementation of cat-neuron and the MES 
model. 

It is widely accepted that the Hodgkin-Huxley class of 
equations (or model) that describe the behavior of giant squid 
axon, stands as the most successful quantitative computational 
model in the neural science [3]. But it is also known that such 
model has a high computational cost, particularly for large 
networks. Another issue related with Hodgkin-Huxley model is 
that it cannot describe the functional behavior of all types of 
neurons found in nervous systems. There are hundreds of 
morphologically different neuron cells only in mammalians. 
Along with these morphological features, neurons have 
physiological specializations. The cellular diversity 
undoubtedly underlies in the capacity of the system of forming 
complicated networks to mediate sophisticated behaviors [17, 
1]. 

 

THE CANDIDATE NEURAL MODEL 
Recently, Izhikevitch [9, 10, 11] have presented a model of a 
single neuron that may represent many biophysically accurate 
Hodgkin-Huxley-type neural models. By treating neurons as 
dynamical systems, the model considers that the resting state of 
neurons corresponds to a stable equilibrium. Neurons are 
excitable because the equilibrium is near a bifurcation, and 
despite the existence of many ionic mechanisms of spike 
generation there are only four generic bifurcations of equilibria. 
By analyzing the phase portrait at neuron bifurcations the 
model can explain why neurons have many different behaviors 
like well-defined threshold, all-or-none spikes, hysteresis, and 
frequency preferences among others. As pointed in [9] these 
features determine the kind of computation a neuron do, not the 
overall ionic current per se. 
A concise explanation of the model may be found in [10] and 
the full explanation of how the model was achieved may be 
found in [9]. As pointed in [m], bifurcation methodologies had 
enabled the reduction of neuron models to a two-dimensional 
(2-D) system of ordinary differential equations of the form: 
 
     v' = 0.04 v2  +  5 v  +  140  -  u  +  I   (1) 
     u' = a (b v - u)     (2) 
 
with the additional computational artifact of the after-spike 
resetting: 
 
     if  v ≥ 30 mV  then     
          v ← c ; and   
          u ← u + d     (3) 
 
 
 

 
As described in [10], v and u are dimensionless variables. 
 

• v represents the membrane potential (scaled to milivolts); 
• u represents the membrane recovery variable (a negative 

feedback to v); 
• I is a variable that represents synaptic currents or injected 

dc-currents. 
 
The parameters a, b, c, and d are also dimensionless and 
represent: 
 
• a describes the time scale of the recovery variable u. 

Smaller values result in slower recovery (typically a = 
0.02); 

• b describes the sensitivity of the recovery variable u to the 
sub-threshold fluctuations of the membrane potential v 
(typically    b = 0.2); 

• c describes the after-spike reset value of the membrane 
potential v (typically c = -65 mV); 
 

• d describes the after-spike reset of the recovery variable u 
(typically d = 2). 

 
Also in the above equations, v' and u' denote the derivatives 
d/dt, where t is the time, given in milliseconds, to correspond 
to the other parameters. 
 
The individual neuron model reproduces a wide range of 
neuronal biological behaviors such as spiking, bursting, and 
mixed mode firing patterns, continuous spiking with frequency 
adaptation, spike threshold variability, bi-stability of resting 
and spiking, sub-threshold oscillation and resonance, etc. But 
when trying to model open self-organizing systems by using 
such neuron model other factors must be taken into account. 
More precisely, neurons must be connected one another and, by 
taken the biology as a model, it requires a synaptic model. It 
most also be taken into account that in biological world neurons 
generates action potential (spikes) in time, and also, it takes 
time to such spikes to propagate from one site to another. 
Furthermore, when operating together, it is expected from 
groups of neurons the emergence of synchronous operation, 
also called coalition. 
The mentioned model works with a resolution of one 
millisecond, so time control is incorporated to the model due 
the nature of the spiking network to which it is connected to. 
Regarding to delay propagation, it is suggested in [10] that a 
possible extension of the model is to treat u, a, and b as 
vectors, and use Σu instead of u in the voltage equation (1). 
Such procedure will account for slow conductance in multiple 
time scale, although the model’s author warns that it would be 
unnecessary for networks that simulate cortices. 
When coupled, spiking neurons may present patterns that 
resemble collective behavior as well as Poissonian patterns of 
firing as shown in [11].  
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SYNAPTIC DYNAMICS 
There are two types of synapses in the nervous systems: 
electrical and chemical. In electrical synapses the presynaptic 
and the postsynaptic terminals are not completely separated, so 
it behaves must like a short-circuit for spikes. By the other side, 
chemical synapses have a gap junction and a chemical 
transmitter is responsible for the continuity of propagation of 
the spike from pre-synaptic to post-synaptic terminals. The 
former presents virtually no delay on spike propagation, while 
the last presents typical delays of 1 to 5 ms [14]. 
Perhaps the most important characteristic of chemical synapses 
is that they can chance the strength of their connection. Recent 
researches have shown that the strength of the connection 
between two chemical synapses can be modified by activity, 
revealed by a direct dependence on the timing of neuronal 
firing on either side of the synapse [12, 16, 18, 13]. The so-
called STDP (spike timing-dependent plasticity) is a powerful 
computational characteristic of neurons because, according to 
the temporal delay between pre- and postsynaptic spiking 
activity, a connection between neurons can be strengthened 
(when the presynaptic spike precedes the postsynaptic one) or 
weakened (when the postsynaptic spike happens before the 
presynaptic one). Therefore, the temporal order in the precise 
millisecond-scale is a mechanism that provides biological 
neural networks with a learn system. 
In [3] an STDP model of synaptic plasticity is presented into a 
neural network implemented with the model described above. 
According the authors, the dynamics of passive change of the 
synaptic weight cij from neuron j to neuron i are described by 
the second-order linear equation: 
 
  c''ij = - (c'ij - a) 104  (4) 
 
where a describes slow, activity-independent increase of 
synaptic weight. Such implementation is a particular one. 
Others forms of implementation of STDP rules may be 
implemented. What the example shows is that its 
implementation may represent another equation that probably 
must be calculated to each pair of synapses present into the 
network. 
 

FINAL REMARKS 
The choice of the Izhikevich model for implementing the MES 
is founded in three issues: 
 

• the dynamic properties of the Izhikevich model are 
very suitable to match the synchronization 
requirements implied in the MES, allowing to the 
arousing of the stability spans of the correlations 
among neural assemblies (or sub-networks, in the 
Healy terms); 

• the existence of a rich dynamics with possible choice 
of diverse firing patterns that can cope with several 
different mappings, namely functors, between two 
time instances of a evolving category; 

• a satisfactory trading between node complexity and 
topological connectivity among nodes.  

 

This third issue refers to  the number of connections that one 
neuron should have with the others in an assembly in order to 
allow sufficient capacity to the network to express the category. 
We are currently considering the formal characterization of this 
trading between the complexity or expressiveness of the node 
employed for the node (neuron) and the number of connections 
that it should make to form its neighborhood.  A difficult aspect 
found in this formulation is that the dynamical aspects shall be 
considered when concerning to an evolutive model like the 
MES. 
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