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Abstract. We introduce the use of adaptive automata as a basis for
information representation to build a cognitive architecture. We discuss
some fundamental issues of the cognitive processes from the conceptual
and functional points of view, with the purpose of setting an operational
framework to develop methodologies for simulation and project of cog-
nitive characters and robots.

1 Introduction

Our research effort has been targetted to the development of intelligent charac-
ters and robots that use cognition as a means to achieve their goals. We have
done some prior investigation on building artificial life like characters in the
past (Miranda, 2001a , 2001b), implemented as agents controled by finite-state
machines. The characters developed on those works were very simple virtual
creatures, each with one sensor and one effector. The sensor gathered visual
input from the environment and the effector allowed the virtual creature to
move on a flat surface. The finite-state machine received the results of the vi-
sual perception module and following this, it produced an output to activate
the effector to move in some direction. The finite-state machine of the creature
was not a pre-specified one, built following some project: it was created by an
automatic procedure, which chose randomly the available states, the topology
and the transitions. Depending on the resulting machine, the creatures could
behave consistently with their surronding environment rules, or not, displaying
sometimes an unappropriate behavior. The environment had two types of ob-
jects, with distinctive visual properties: good objects, that feed the creatures
with some ’energy’, and bad objects, that take some energy from them. If the
energy was completely consumpted, the creature died. So, the goal of the crea-
tures was to live as long as they could, interacting properly with these two kinds
of objects. By starting so randomly, death was an expected event in this sce-
nario. However, the individuals that reached the ’maturity’, were able to mate
in pairs, producing new creatures. The maturity was some pre-specified elapsed
time counted from the starting of the simulation. The state-machines could also
suffer mutations that eventually would improve the behavior (or not), favoring
the creature. After some generations, a well-adapted character usually resulted
from this evolutionary process. So, our conclusion was that the species could
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learn the environment rules in a long-term process, although at the cost of the
lives of many individuals. The next fundamental step for this research project
was to improve the creature concept in order to provide a better individual per-
formance from the very beginning of the species. The answer, seemed to us,
was to use and to manage knowledge. Although we could interpret the species
evolution as a cognitive process, each individual was not exactly a cognitive crea-
ture. Through this work, we have faced many challenges concerning with how to
provide to the characters a method for handling specific useful information that
they could have gathered during their interaction with the surrounding medium.
Now we have a new proposal for tackling this problem in an appropriate way.

Our original method consisted in making the character as an information
gathering agent controled by the finite-state machine implemented by an au-
tomaton. The automata were represented as strings that encoded the structure
of the graphs corresponding to the respective state-transition machines. They
could be improved by means of genetic optimization procedure, that takes the
strings that represent the automata as the genetic codes of each one, and change
them by applying mutations and crossovers during a mating between each two
automata. On the long term, this resulted in machines that presented behavior
very consistent with the goal achievement by the agents, which consisted in surv-
inving as long as possible in an environment that contained both benefitial and
threatening elements. Although the qualitative results had shown promising, the
performance was poor concerning the long time required to produce interesting
solutions. From the standpoint of the species, it would be expected an improve-
ment after each generation, but from the individual standpoint, the possibility
of improper behavior was very evident. This was mainly because the character
didn’t posses a mechanism for knowledge management. This means, to preserve
the gathered information, process it in order to find invariants, memorize them,
categorize the invariants and select among them those that could form a basis
for representation of the acquired knowledge. This representation would rathaer
be in a form that encodes the useful information on a manner that could be
promptly used on making inferences for taking actions.

Our present proposal consists in doing the above described knowledge man-
agement process, by means of a method based on adaptive automata. The overall
idea consists in taking automata as the representatives of the information gath-
ered from the environment. Then, by using a set of appropriate operations and
transformations, a new automaton will be produced from them. These last ones
will encompass the more recent information brought by the perceptual modules,
with the prior knowledge encoded on other already existing automata. The re-
sulting system will thus be a bigger automaton that acquired more states through
this process. It is thus referred as an adaptive automaton.

This paper is organized as follows: on section two, we will describe the agent
that represents the cognitive characters or robots. Then in section three we will
present more formally the concept of adaptive automata. On section four, we
will use this concept to build an agent architecture that copes with the cognitive
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processes. And finally, we will propose a set of experiments that are going to be
conducted, in order to test the idea and discuss some future perspectives.

2 Cognitive agents

An agent will be taken here as an useful abstraction of the character or robot.
It considers only the details that are relevant for a given analysis or simulation.
The minimum items that are required for the simplest agent is to have an in-
put set (the stimuli from the environment), an output set (its actions over the
environment) and a minimal set of rules to produce the output from the input.
The transformation that associates the outputs to the corresponding inputs is
called here the agent behavior. This transformation depends on the system in-
ternal states , which generally are not observable. The transformation involves
a state-transition function and an output observer.

Fig. 1. The cognitive agent architecture - The agent comprises all subsystems shown
here. Its interface with the environment is mediated through an avatar, indicated here
by the humanoid character.

The state-transition function depends on the inputs and on past states, to
generate the present state. The output observer function depends on the present
state. When dealing with discrete states, one can implement the state-transition
function by a finite-state machine, represented by an automaton. The overall
agent behavior depends on which kind of agent is being considered (for account
of agent types, see Russell and Norvig 1995). In the simplest cases of agents
with internal states, the automaton implementing the finite-state machine is ul-
timately the responsible for generating the outputs, as a response to the inputs
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(and depending on the internal states). In more complex cases, this will hap-
pen through the mediation of other process that can select or change the state
machine. These are the cases of adaptive agents. More specifically, we are inter-
ested here on a particular type of adaptation strategy, that employs adaptive
automata.

Our agent architecture will be organized in the following way, as depicted
on figure 1. The inputs from the environment are gathered by the sensorial sub-
system. This module role basically is to encode the inputs in a proper way to
conform to the subsequent module, the perceptual subsystem. For instance, in
the case of the visual sensing, the sensorial subsystem would provide the map-
ping of the available visual field into a numeric matricial representation, after the
spatial sampling and amplitude quantization of the light intensity field. Then,
the perceptual subsystem receives the sensorial information, called sensations,
and analyse them, generating a set of several representations with different per-
ceptual properties. These representations are then fused into a single one, called
here the percept, that addresses now all kinds of uses that the cognitive system
could perform with the information contained in it. The cognitive subsystem is
responsible for selecting the useful information, correlate it with past informa-
tion and with the acquired knowledge and performing the further reasoning that
leads to the generation of the output. The main aspect that is characteristic of
our architecture is that it does it by means of adaptive automata.

3 Adaptive automata

According to Neto 2001, a formal device is said to be adaptive whenever its
behavior changes dynamically, in a direct response to its input stimuli, without
interference of external agents, even its users. In order to achieve this feature,
adaptive devices have to be self-modifiable. In other words, any possible changes
in the devices behavior must be known at their full extent at any step of its oper-
ation in which the changes have to take place. Therefore, adaptive devices must
be able to detect all situations causing possible modifications and to adequately
react by imposing corresponding changes to the devices behavior.

3.1 Non-adaptive Rule-driven devices

This section is based in Neto 2001. A (non-adaptive) rule-driven device is any
formal machine whose behavior depends exclusively on a finite set of rules which
map each possible configuration of the device into a corresponding next configu-
ration. The device is said to be deterministic if and only if, for any given initial
or intermediate configuration and any input stimulus,its defining set of rules
determines one and only one next configuration. The device is nondeterministic
otherwise.

Formally, the non-adaptive rule-driven device is represented by:
ND = (E ,O, C, c0, A, NR), where:
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– E as the finite set of all possible events that are valid input stimuli for ND.
The symbol ε denotes ”the empty” element. In our definition, ε ∈ E .

– O is a finite set of all possible symbols to be output by ND as result of the
application of the rules in NR.

– C is the set of all its possible configurations.
– c0 is the initial configuration of ND, with c0 ∈ C.
– A ⊆ C is the subset of its accepting configurations.
– NR ⊆ C × E × C ×O is the set of non-adaptive rules. These rules r ∈ NR

have the form r = (ci, e, cj , z), where ci, cj ∈ C and z ∈ O. Operationally,
we have that the rule r, in response to any input stimulus e ∈ E , changes
the current configuration ci to cj , consumes e and outputs z.

The string w = w1w2...wn is a stream of input stimuli, where wk ∈ E − {ε}
being k = 1, 2...n ≥ 0. A rule r ∈ NR is said to be compatible with the current
configuration c if and only if ci = c and e ∈ E is either empty or equal to the
device’s current input stimulus. A valid change in configuration caused by a
determined rule r is represented by notation ci ⇒e cj .

Note that e, z or both may be empty. Let ci ⇒∼ cm, m ≥ 0 denote the
sequence c1 ⇒ε c2 ⇒ε ... ⇒ cm an optional sequence of empty moves. Now,
if ci ⇒∼wk cm means an optional sequence of empty moves followed by a non-
empty one consuming the symbol wk, an input stream w = w1w2...wn is said to
be accepted by ND when c1 ⇒∼w1 c2 ⇒∼w2 ... ⇒∼wn cn ⇒∼ c. The language
described by ND is the set L(ND) = {w ∈ E∗ | c0 ⇒w c, c ∈ A} of all streams
w ∈ E∗ that are accepted by ND.

3.2 Adaptive Rule-driven devices

Define T as a nonempty sequence of natural numbers that starts at 0. Each value
k assumed by T may index the names of time-varying sets.

The adaptive device is represented by: AD = (ND0, AM), where:

– NDk is AD’s subjacent non-adaptive device at some operation step k ∈ T .
ND0 is the AD’s initial subjacent device.

– AM ⊆ BA × NR × AA defined for a particular adaptive device AD, is an
adaptive mechanism to be applied at any operation step k ∈ T to each rule
in NRk ⊆ NR. AM must be such that it operates as a function when
applied to any sub-domain NRk ⊆ NR. This will determine a single pair
of adaptive actions to be attached to each non-adaptive rule. BA (before-
action) and AA (after-action) are sets of adaptive actions, both containing
the null action. Adaptive actions map the current NDk of AD into a new
NDk+1 by applying adaptive rules.

The relationship between the AD and the ND is depicted on figure 2
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Fig. 2. Relationship between the Adaptive Device (AD) and the Non-adaptive De-
vice(ND).

3.3 Adaptive Automata

State machines are very important mathematical models used for describing dy-
namic systems and processes. In any time,these devices have a configuration
which fully determines its further behavior. A formal machine operates by suc-
cessively changing the device from one configuration to another, in response to
stimuli consumed from their input stream, we may state that such devices start
their operation at some initial configuration that follows well-known fixed re-
strictions. After having processed the full input sequence of stimuli, the device
reaches some configuration which may indicate that its whole input stream has
been either accepted or rejected (Neto , 2001 ).

In the Adaptive Automata, the non-adaptive device element NDk is a finite-
state automaton ( Neto and Pariente 2002, Rocha and Neto 2005) , composed of
a set S of states, a finite non-empty alphabet Σ, a transition map δ, an initial
state s0 ∈ S and a set F ⊂ S of final states. Transitions map ordered pairs spec-
ifying the current state and the current input symbol into a new state. At each
execution step of an automaton, the devices current state and the current in-
put symbol determine a set of feasible transitions to be applied. In deterministic
cases, the set is either empty (no transition is allowed) or it contains a single tran-
sition (in this case, that transition is immediately applied). In non-deterministic
cases, more than one transition are allowed to be executed in parallel. In sequen-
tial implementations, a backtracking scheme chooses to apply one among the set
of allowed transitions. There are two types of transitions:
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Fig. 3. Example of adaptive device operation. At the initial state the output is an
empty string, while at the input is provided the string w = w1w2. In the first step, the
input w1 is read, then NDO changes to ND1 and the output is O1. In the next step,
no new input is processed and ND1 changes to ND2, with output O2. Finally, input
w2 is read, then ND2 changes to ND3 but no output is produced. The overall result is
that the output string O = O1O2 was produced as a response to the input string W.

– from state A to state B: transitions (A,α,B), which consume an input sym-
bol α

– and the empty transitions (A, ε, B), which do not modify the input.

Adaptive actions change the behavior of an adaptive automaton by modifying
the set of rules defining it. The adaptive mechanism AM of adaptive automata is
defined by attaching a pair of (optional) adaptive actions to the subjacent non-
adaptive rules defining their transitions, one for execution before the transition
takes place and another for being performed after executing the transition. Thus,
adaptive transitions make reference up to a pair of adaptive actions, B (before-
action) and A (after-action). Their notation is summarized below:

(s, α) : A → (s′, α′) : B
where s ∈ S;α ∈ Σ and B and A are the adaptive actions.
In the general case, adaptive actions A and B are representations of paramet-

ric calls to adaptive parametric functions, which have the general form F (Ω) with
Ω = {ϕ1...ϕn} where Ω are the n-parameters set . This one describe the mod-
ifications to apply to the adaptive automaton whenever they are called. These
changes are described and executed in three sequential steps: (a) An adaptive
action may be specified for execution prior to applying the specific changes to
the automaton. (b) A set of elementary adaptive actions specifies the modifi-
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cations performed by the adaptive action being described. (c) Another optional
adaptive action may performed after the specific modifications are applied to
the automaton. Elementary adaptive actions specify the actual modifications to
be imposed to the automaton. Changes are performed through three classes of
adaptive actions, which specify a transition pattern against which the transitions
in use are to be tested:

1. ?[pattern]: Inspection-type actions (introduced by a question mark in usual
notation), which search the current set of transitions in the automaton for
transitions whose shape match the given pattern.

2. −[pattern]: Elimination-type adaptive actions (introduced by a minus sign
in usual notation), which eliminate from the current set of transitions in the
automaton all transitions matching the given shape.

3. +[pattern]: Insertion-type adaptive actions (introduced by a plus sign in
usual notation), which add to the set of current transitions a new one, accord-
ing to the specified shape. The adaptive mechanism turn a usual automaton
into an adaptive one by allowing its set of rules to change dynamically.

4 Cognitive agent architecture with adaptive automata

The main rationale behind the present idea is that the use of adaptive automata
can lead to a cognitive architecture with interesting properties, concerning the
easiness of conception and improvement. Usually, this kind of subject could be
considered a very complex one, challenging and demanding a great effort for
project and implementation. The point that shows a very promising direction
is the use of a method based on a novel kind of knowledge representation and
management in this context.

The agent behavior, in a more general case, is targetted to certain goals,
which should be reach within a satisfactory performance. The fulfillment of these
would arise from the actions executed by the agent in response to the received
stimuli. So, the focus is in the performance on acting. The responsible for this
performance is the internal state machine, that should be designed with optimal
characteristics, relative the criteria that lead to this performance optimization.
To reach the optimum there are two aspects that should be considered: (i) the
functional characteristics of the system under optimization and, (ii)the existence
of satisfactory solutions within the optimization space. This second issue can be
properly satisfied by means of a stepwise procedure, provided that the environ-
ment would not be dynamic or if it doesn’t change too fast. If this is the case,
the agent can find a proper solution decomposing the problem in small temporal
steps and following the input progress in this pace. What is more problematic
is the first issue: the agent’s state machine should have sufficient functionality
to solve the problem. And this will dictate the ability of the agent to be well-
adapted to a variety of environments. There are two remedies for this situation:
or the agent would be restricted to live in a limited variety of environments types
and configurations, or it should have adaptability enough to add new function-
alities to its behavior. We are addressing here the second case, which is more
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general. The solution we are providing is the use of the adaptive automata to
construct an evolving finite-state machine that controls the agent’s behavior.

The acquisition of more functionality, as we argued, should happen in a way
that the agent overall behavior could satisfy the performance optimization crite-
ria. The difficulty encountered in this point is that the requirements for stating
these criteria are not determined by the agent alone, but rather by the envi-
ronment. The execution of its actions in the surrounding medium provides the
challenges that could jeopardize the goal reaching by the agent. Then, the solely
way of getting more functionallity is extracting it from the environment. This
is the reason that lead us to formulate the model in the presented manner. The
agent’s perceptual module will provide the candidate information that contains
the new functionality to be aided to the agent’s state machine. It will produce
percepts encoding this possibly useful information. The cognitive module will be
the responsible by the detection, in the percepts, of the presence of new funtion-
alities ant to add them to the state machine. If no new funcionalities are present
in the percepts, in this case they are only encoding episodic and situational in-
formation, that will be treated as a regular input by the currently existing state
machine, which thus can generate the outputs from the recent inputs and based
on the current state of the machine. If there are some new functionalities present
in the percepts, then they will be incorporated to the state machine before the
output evaluation. The mechanism that enables this scenario is provided by the
adaptive automata framework.

The cognitive property of the system is resulting from this adaptation ca-
pability immanent in such framework. The purely perceptual reactive agent is
capable of analysing the environment and acting based on this analysis results,
employing algorithms that can vary from the simple search to the very sophis-
cated variational methods. However, in these cases, the best that it can do is
to perform optimizations based on pre-existing functional characteristics and at
most control their parameters adaptively. To take the problem-solving process
in a cognitive fashion means to add more structure (in this case topological
means analytic)to the agent state-transition function, gathered from the new
information. This new information is considered more valuable depending on
the spectrum of new situations it will enable the agent to deal with succes.
Thus, invariants to a great number of transformations worth more than others.
These consist on structural knowledge, the kind of information used to build
representations. This is thus a clear portrait of cognition.

From the representational point of view, the perceptual subsystem imple-
ments two functions:

1. Filters the sensorial information to a data representation. Such filtering pre-
selects only the relevant elements contained in the sensorial information. The
result of this filtering is the generation of a symbol string I that encodes the
sensorial information that will feed the perceptual subsystem.

2. Then the string I is converted to an automaton that has the capability of
recognizing the string, Such automaton, denoted by Pi, is the percept, that
will be directed as input to the cognitive subsystem.
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Inside the cognitive subsystem, the percept will be incorported to the au-
tomaton denoted by M, that produces the agent’s behavior. M is an adaptive
automaton and the incorporation of the percept Pi is done by means of an adap-
tive function that is part of M. Given that the cognitive agent has a set A of
possible actions, that can be executed to produce effected actions, each new per-
cept Pi that is incorporated by the automaton M, is also linked to one or more
actions of the set A, by the insertion of a new transition that conects the two
automata by two states, one of each automaton.

This step closes the process of knowledge acquisition from the system, by the
cognitive agent. The following step consists in a process of self-evaluation of the
automaton M. Such process is managed by the cognitive subsystem also. The
structure of M is evaluated under three conditions:

1. If the formation and incorporation of the percepts was well done, so there
are no useless percepts recently incorporated.

2. If the associations with the executable actions of set A are useful for the
agent

3. If the structure is organized efficiently, or if there is no, or little, redundancy,
duplicated percepts or parasite percepts (these last ones cause unecessary
loops in the agent output generation).

In its normal functioning, the cognitive agent sensorial module will always be
generating strings I, taking them and comparing with the current inputs stored
in the agent’s memory. In case there is no equivalent percept, the inclusion into
the machine M above described will be performed. In case the percept is already
existent, the corresponding associated action is executed, by generating a proper
output. One of the cognitive subsystem functions is to analyse the history of the
executed actions and use this analysis result in the self-evaluation process.

5 An experiment for testing the cognitive agent
architecture and final remarks

In this paper we have discussed the problem of projecting an agent with cogni-
tive capabilities in order to provide a wide spectrum of adaptability, applicable
to virtual characters and robots. Our research line points to both targets, first to
build characters for the computer graphics animations and computer games in-
dustries and, second, to build cognitive robots. We did several experiments with
both kinds of applications in the past, however, this is the first time that we
have a good proposal for a strong cognitive framework. We are considering a set
of experiments to be done in order to test this framework. The first ones, which
are going to appear in a forthcoming paper, consist in testing the framework
with an open architecture that we have built in the past and has been available
for public download in the internet (Miranda - 2004). The experiment consists in
extracting visual informations from the environment and converting them into
binary patterns that are examples of boolean functions inputs. These functions
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can be approximately estimated by means of an unsupervised bayesian proce-
dure. The functions generalize the inputs gathered in certain situations. Since
we will be considering very simple ones (just the presence of two types of objects
- a good one and a bad one), it is quite simple to categorize the functions into
simple behaviors. Thus, the perceptual module will build two classes of pieces
of adaptive automata, that can be used by the cognitive module to build the
state-transition function. The results seem to be promising, but as we need more
simulations to provide a final conclusive presentation, they will be left for the
forthcoming publication (Kogler et al - 2008).
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