AIASYB-2 Aplicación de la Inteligencia Artificial a los Sensores y Biosensores PCI-AECID B/024393/09

#### **GENETIC ALGORITHMS**



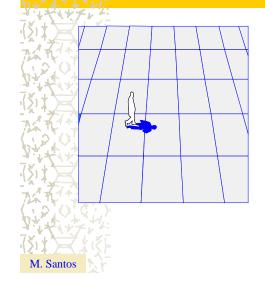
aecid

Matilde Santos Peñas and Jesús Manuel de la Cruz <u>msantos@dacya.ucm.es</u>, <u>jmcruz@fis.ucm.es</u> Dpto. Arquitectura de Computadores y Automática Universidad Complutense de Madrid, Spain

South Brazil Section Chapter of the IEEE Computational Intelligence Society

Brazil, 27 October 2010

### **GENETIC ALGORITHM**



"Genetic Algorithms are good at taking large, potentially huge search spaces and navigating them, looking for optimal combinations of things, solutions you might not otherwise find in a lifetime."

- Salvatore Mangano Computer Design, May 1995

## OUTLINE

- **WOVERVIEW**
- **& CHARACTERISTICS**
- SIMPLE GENETIC ALGORITHM (SGA)
- 😼 EXAMPLE
- **<b>CTHER OPERATORS**
- & EXAMPLE

M. Santos

**X**APPLICATIONS

## **EVOLUTIONARY COMPUTATION**

- Evolutionary computation consists of machine learning optimization and classification paradigms that are roughly based on evolution mechanisms such as biological genetics and natural selection
- The EC field comprises four main areas:
  - genetic algorithms
  - evolutionary programming
  - evolution strategies
- genetic programming.

M. Santos

#### EC PARADIGMS

- EC paradigms differ from traditional search and optimization ones in that EC paradigms:
- 1) Use a population of points in their search,
- 2) Use direct "fitness" information, instead of function
- derivatives or other related knowledge, and ,
- 3) Use probabilistic rather than deterministic transition rules.

#### EC QUICK OVERVIEW

A.S. Fraser, 1950's, Australia, biologist using computers to simulate natural genetic systems
J.D. Bagley (first used term GA in his 1967 Ph.D)
L.J. Fogel, Evolutionary programming, 1960's
I. Rechenberg, Evolution strategy, 1960's
Latane, Particle swarm optimization (Social impact theory)

M. Santos

#### **GA QUICK OVERVIEW**

ヤイヤチレン

M Santo

M. Santo

- J. Holland (1975), "Adaptation in natural and artificial systems"
- beJong's dissertation on GAs, 1975
- D. Goldberg, book "GA in search, optimization, and machine learning", 1989
- 🔌 Since 1985, interest explosion
  - International Conferences
  - Scientific Journals
  - Web resources
  - Widely-used today in business, scientific and engineering circles

## GA MAIN IDEA

Directed search algorithms based on the mechanics of biological evolution

An initial set of individuals evolve along generations by reproduction and mutation, to become the best individuals, the ones who survive.

#### **GA CHARACTERISTICS**

- To understand the adaptive processes of natural systems
- To design artificial systems software that retains the robustness of nature system
- Typically applied to discrete optimization
- & Attributed features:
  - not too fast

M. Santos

- good heuristic for combinatorial problems
- Solution Many variants, e.g., reproduction models, operators

## MORE BENEFITS

- Many ways to speed up and improve a GAbased application as knowledge about the problem domain is gained
- Teasy to exploit previous or alternate solutions
- Flexible building blocks for hybrid applications (Fuzzy+GA, GA+NN, etc)
- Substantial history and range of use

## **ADVANTAGES**

- Seconcept is easy to understand
- Wodular, separate from application
- Supports multi-objective optimization
- b Good for "noisy" environments
- Always gives an answer; answer gets better with time
  - YAn acceptable good solution in a reasonable time
  - At any stage there is a solution (maybe not the best but a good one)
- M. Sant Inherently parallel; easily distributed

## DISADVANTAGES

- You may not find the optimal solution
- The solution space has to take into account only the feasible solutions
- Definition of the evaluation function that includes the knowledge of the problem
- They are not specialized algorithms
  - Application dependence

M. Santos

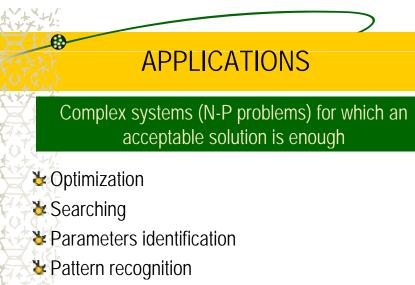
The success depends on the designer

### WHEN TO USE A GA

- Alternative solutions are too slow or overly complicated
- Need an exploratory tool to examine new approaches
- Problem is similar to one that has already been successfully solved by using a GA
- Want to hybridize with an existing solution
- Benefits of the GA technology meet key problem
- requirements
- M. Santos



- 😻 Planning
- by Optimization (circuits, controllers, neural networks, etc.)
- Simulation
- b Hardware design and implementation
- 😼 Data mining
- **b** Identification
- 😻 etc



✤Machine learning

**X**.

M. Santos

# SOME GA APPLICATION TYPES

| Application Types                                                                             |
|-----------------------------------------------------------------------------------------------|
| gas pipeline, pole balancing, missile evasion, pursuit                                        |
| semiconductor layout, aircraft design, keyboard                                               |
| configuration, communication networks manufacturing, facility scheduling, resource allocation |
| trajectory planning                                                                           |
| designing neural networks, improving classification                                           |
| algorithms, classifier systems<br>filter design                                               |
| poker, checkers, prisoner's dilemma                                                           |
| set covering, travelling salesman, routing, bin packing,                                      |
|                                                                                               |

## **ŠIMPLE GENETIC ALGORITHM**

- We Holland's original GA is now known as the simple genetic algorithm (SGA)
- Viter GAs use different:
  - Representations
  - Mutations

M. Santo

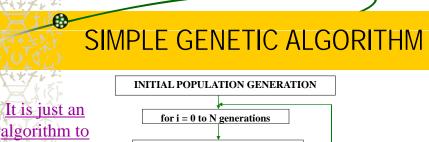
- Crossovers
- Selection mechanisms

### **GA COMPONENTS**

- A problem to solve, and ...
- Encoding technique (gene, chromosome)
- We Initialization procedure
- Section Evaluation Function
- (environment)

(creation)

- Selection of parents (reproduction)
- Genetic operators (mutation, recombination)
- Version Settings (practice and art)



#### algorithm to **EVALUATION** solve a problem PARENTS SELECTION **REPRODUCTION (CROSSOVER)** MUTATION REPLACEMENT i = i+1 **Best individual**

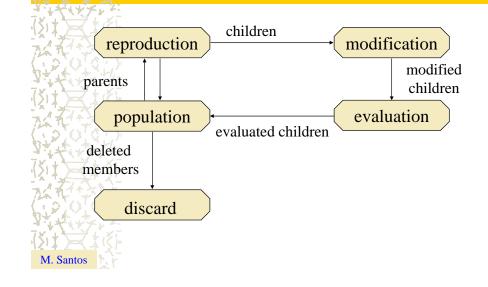
## SIMPLE GA PSEUDO-CODE

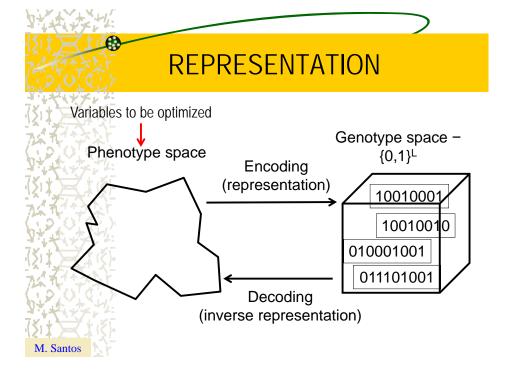
initialize population;

M. Santo

- evaluate population;
- while TerminationCriteriaNotSatisfied
  - select parents for reproduction; perform recombination and mutation; evaluate population;

### THE GA CYCLE OF REPRODUCTION





## **INITIAL POPULATION**

Population of *n* individuals (potential solutions)
Individual = data structure (string of characters or chromosomes from an alphabet Φ)
- CROMOSOME = a<sub>1</sub> a<sub>2</sub> a<sub>3</sub>... a<sub>m</sub>, a<sub>i</sub> ∈ Φ
- Chromosome: parameters to be optimized
Each element of the chromosome, a<sub>i</sub>, a gene
- Allele: value
- Locus: position in the string
Size: enough to cover the solution space

REPRESENTATION

Chromosomes could be:

- Bit strings
- Real numbers
- Permutations of elements
- Lists of rules

M Santo

- Program elements
- A. any data structure ...
- (0101 ... 1100) (43.2 -33.1 ... 0.0 89.2) (E11 E3 E7 ... E1 E15) (R1 R2 R3 ... R22 R23) (genetic programming)

### REPRESENTATION

#### The Binary string

M. Santo

- Easy operations
- Lowest cardinality of the alphabet (simples searching)
- Algorithms convergence proved
- Variants (BCD, Gray code, etc)

## & Other types of representations

Different cardinality alphabets

## **EVALUATION**

#### **¥**FITNESS FUNCTION

- Each individual is assigned a fitness measure
  - How good it is as solution
  - More chances of surviving
- The link between the GA and the problem it is solving
  - > Specific
- Normalization (scale fitness values)
  - Better discrimination

## POPULATION INITIALIZATION

#### 🏼 SIZE:

- Start with moderate sized population (50-500)
- Population size tends to increase linearly with individual string length
- (not exponentially)
- RANDOMLY:
- To cover all the space
- To prove the algorithm
- HEURISTICALLY (include promising values):
- Assure the variety of solutions (do not skew population significantly)
- Avoid the premature convergence of the algorithm
- M. Santos

M. Santos

## REPRODUCTION

#### **W** PARENT SELECTION

- **& CHROMOSOME MODIFICATION** 
  - Genetic operators:
    - Crossover (recombination)
    - Mutation

Genetic operators significantly enhance parallel search capabilities

### PARENT SELECTION

- Parents are selected at random with selection chances biased in relation to chromosome evaluation
  - Better individuals get higher chanceChances proportional to fitness

#### 

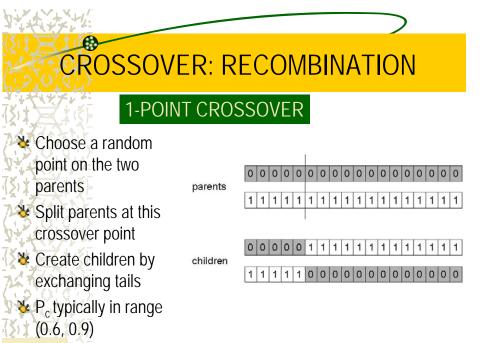
M. Santos

### **REPRODUCTION CYCLE**

- 1. Select parents for the mating pool
  - (size of mating pool = population size)
- 2. Shuffle the mating pool

Santo

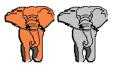
- 3. For each consecutive pair apply crossover with probability  $\mathbf{p}_{c}$ , otherwise copy parents
- 4. For each offspring apply mutation (bit-flip with probability  $\mathbf{p}_{m}$  independently for each bit)
- 5. Replace the whole population with the resulting offspring



#### **ČROSSOVER: RECOMBINATION**

Crossover is a critical feature of genetic algorithms:

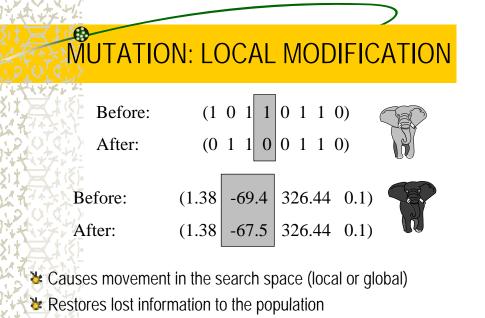
It greatly accelerates search early in evolution of a population



- It leads to effective combination of
- schemata (subsolutions on different chromosomes)

– Often start with relatively high xover rate, and reduce it during the run M. Santos

Santo



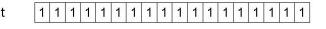
## **MUTATION: LOCAL MODIFICATION**

The Alter each gene independently with a probability  $\rho_m$ 

 $\geq \rho_m$  is called the mutation rate

Typically between 1/pop\_size and 1/ chromosome\_length
 Usually held constant or increased during run (when fitness variability drops below some threshold)

쓸 parent



### child M. Santos

#### 0 1 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 1

- SURVIVOR SELECTION
- A new population is generated each generation)
- - Generational GA
    - Entire populations replaced with each iteration
  - Steady state GA
    - A few members replaced each epoch
      - Elitism: the best individual is copied into the next generation
      - New individuals randomly generated
      - Generational gap: replace x percent (worst individuals)

Population typically remains the same size

#### **TERMINATION CRITERIA**

Second time

M. Santos

- Number of generations
  - Depends on the complexity of the problem
- When the solution converges to a enough good value (if known)
  - Population member(s) with > specified fitness
- **W**No change in max fitness in *m* generation

## SGA SUMMARY

| Representation     | Binary strings                              |
|--------------------|---------------------------------------------|
| Recombination      | N-point or uniform                          |
| Mutation           | Bitwise bit-flipping with fixed probability |
| Parent selection   | Fitness-Proportionate                       |
| Survivor selection | All children replace parents                |
| Speciality         | Emphasis on crossover                       |

### **ISSUES**

- Choosing basic implementation issues:
  - representation
  - population size, mutation rate, ...
  - selection, deletion policies
  - crossover, mutation operators
- Termination Criteria

M. Santos

- & Performance, scalability
- Solution is only as good as the evaluation function (often hardest part)

- SUMMARY OF GA PROCESS
- 1. Select the initial population (usually randomly).
  - 2. Select percent probability of crossover (often .6-.8) and of mutation (often about .001).
  - 3. Calculate the fitness value for each population member.
- Normalize fitness values and use to determine probabilities for reproduction.
- 5. Reproduce new generation with the same number of members, using probabilities from 3.
- 6. Pair off strings to cross over randomly.
- 7. Select crossing sites (often 2) randomly for each pair.
- 8. Mutate on a bit-by-bit basis.
- 9. If more generations, go to step 2.
- M. Santo 10. If completed, stop and output results.

#### AN EXAMPLE AFTER GOLDBERG '89

- Simple problem: max x<sup>2</sup> over {0,1,...,31}
- **GA** approach:

M. Santos

- Representation: binary code, e.g. 01101  $\leftrightarrow$  13 (2<sup>5</sup>)
- Population size: 4 individuals
- 1-point xover, bitwise mutation
- Roulette wheel selection
- Random initialization
- We show one generational cycle done by hand

#### X<sup>2</sup> EXAMPLE: SELECTION

大街

M. Santos

| NA AL   |         |                     |         |              |          |                        |                        |
|---------|---------|---------------------|---------|--------------|----------|------------------------|------------------------|
| がた      | String  | Initial             | x Value |              | $Prob_i$ | Expected               | Actual                 |
| DY PA   | no.     | population          |         | $f(x) = x^2$ |          | $\operatorname{count}$ | $\operatorname{count}$ |
| 14.47   | 1       | $0\ 1\ 1\ 0\ 1$     | 13      | 169          | 0.14     | 0.58                   | 1                      |
|         | 2       | $1\ 1\ 0\ 0\ 0$     | 24      | 576          | 0.49     | 1.97                   | 2                      |
| 公共      | 3       | $0\ 1\ 0\ 0\ 0$     | 8       | 64           | 0.06     | 0.22                   | 0                      |
| D'the A | 4       | $1 \ 0 \ 0 \ 1 \ 1$ | 19      | 361          | 0.31     | 1.23                   | 1                      |
| 74.47   | Sum     |                     |         | 1170         | 1.00     | 4.00                   | 4                      |
|         | Average |                     |         | 293          | 0.25     | 1.00                   | 1                      |
| が取      | Max     |                     |         | 576          | 0.49     | 1.97                   | 2                      |
| 14 M    | 12-14   |                     |         |              |          |                        |                        |
| 151+5   |         |                     |         |              |          |                        |                        |
| 1414.7  |         |                     |         |              |          |                        |                        |

#### X<sup>2</sup> EXAMPLE: CROSSOVER

| - + <i>F</i> |                      |                    |                        |                     |         |              |
|--------------|----------------------|--------------------|------------------------|---------------------|---------|--------------|
| 人で           | String               | Mating             | Crossover              | Offspring           | x Value | Fitness      |
| and a        | no.                  | pool               | $\operatorname{point}$ | after xover         |         | $f(x) = x^2$ |
| († <b>(</b>  | 1                    | $0\ 1\ 1\ 0\  \ 1$ | 4                      | $0\ 1\ 1\ 0\ 0$     | 12      | 144          |
| 1            | 2                    | $1\ 1\ 0\ 0\  \ 0$ | 4                      | $1\ 1\ 0\ 0\ 1$     | 25      | 625          |
| £."(         | 2                    | $1\ 1\  \ 0\ 0\ 0$ | 2                      | $1\ 1\ 0\ 1\ 1$     | 27      | 729          |
| المدينة      | 4                    | $1\ 0\  \ 0\ 1\ 1$ | 2                      | $1 \ 0 \ 0 \ 0 \ 0$ | 16      | 256          |
| 643          | $\operatorname{Sum}$ |                    |                        |                     |         | 1754         |
| 12           | Average              |                    |                        |                     |         | 439          |
|              | Max                  |                    |                        |                     |         | 729          |
| J            | A 147.               |                    |                        |                     |         |              |



| 171  | X:         |                     |                 |         |              |
|------|------------|---------------------|-----------------|---------|--------------|
|      | String     | Offspring           | Offspring       | x Value | Fitness      |
|      | no.        | after xover         | after mutation  |         | $f(x) = x^2$ |
|      | 1          | $0\ 1\ 1\ 0\ 0$     | 1 1 1 0 0       | 26      | 676          |
| 171  | 2          | $1\ 1\ 0\ 0\ 1$     | $1\ 1\ 0\ 0\ 1$ | 25      | 625          |
| 10.0 | 2          | $1\ 1\ 0\ 1\ 1$     | 11 <u>0</u> 11  | 27      | 729          |
| ***  | 4          | $1 \ 0 \ 0 \ 0 \ 0$ | 10100           | 18      | 324          |
|      | Sum        |                     |                 |         | 2354         |
| 1 44 | Average    |                     |                 |         | 588.5        |
| 120  | Max        |                     |                 |         | 729          |
| W    | 11 TH 11 - |                     |                 | -       |              |

#### THE SIMPLE GA

Whas been subject of many (early) studies

- still often used as benchmark for novel GAs
- bows many shortcomings, e.g.
  - Representation is too restrictive
  - Mutation & crossovers only applicable for bit-string & integer representations
  - Selection mechanism sensitive for converging populations with close fitness values
  - Generational population model can be improved with
  - explicit survivor selection

. Santos

## **OTHER REPRESENTATIONS**

Consider example problem, where 127 is 01111111 and 128 is 10000000

The smallest fitness change requires change in every bit

- Sray coding of integers (still binary chromosomes)
  - Gray coding is a mapping that means that small changes in the genotype cause small changes in the phenotype (unlike binary coding). "Smoother" genotype-phenotype mapping makes life easier for the GA

## **REVIEW OF GA OPERATIONS**

- Representation of variables
- Population size
- Population initialization
- Fitness calculation
- Reproduction
- Crossover
- Inversion
- Mutation
- · Selecting number of generations

## OTHER REPRESENTATIONS

Nowadays it is generally accepted that it is better to encode numerical variables directly as

Integers

M Santos

Floating point variables

Some software converts dynamic range and resolution into appropriate bit strings

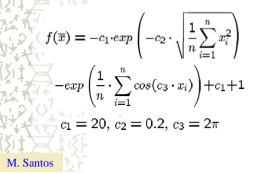
Different alphabets possible

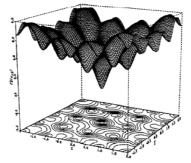
### **INTEGER REPRESENTATIONS**

- Some problems naturally have integer variables, e.g. image processing parameters
- Others take categorical values from a fixed set e.g. {blue, green, yellow, pink}
- **W**-point / uniform crossover operators work
- Extend bit-flipping mutation to make
  - "creep" i.e. more likely to move to similar value
  - Random choice (esp. categorical variables)
  - For ordinal problems, it is hard to know correct range for creep, so often use two mutation operators in tandem

## **REAL VALUED PROBLEMS**

Many problems occur as real valued problems, e.g. continuous parameter optimization f: ℜ<sup>n</sup> → ℜ
 Illustration: Ackley's function (often used in EC)





## MAPPING REAL VALUES ON BIT STRINGS

 $z \in [x, y] \subseteq \mathcal{R}$  represented by  $\{a_1, \dots, a_L\} \in \{0, 1\}^L$ 

[x,y] → {0,1}<sup>L</sup> must be invertible (one phenotype per genotype)
 Γ: {0,1}<sup>L</sup> → [x,y] defines the representation

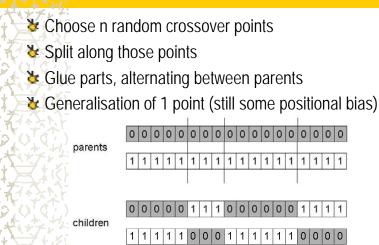
$$\Gamma(a_1,...,a_L) = x + \frac{y - x}{2^L - 1} \cdot (\sum_{j=0}^{L-1} a_{L-j} \cdot 2^j) \in [x, y]$$

Conly 2<sup>L</sup> values out of infinite are represented
 L determines possible maximum precision of solution
 High precision → long chromosomes (slow evolution)
 Santos

## ALTERNATIVE CROSSOVER OPERATORS

- \* Performance with 1 Point Crossover depends on the order that variables occur in the representation
  - more likely to keep together genes that are near each other
  - Can never keep together genes from opposite ends of string
  - This is known as *Positional Bias*
  - Can be exploited if we know about the structure of our problem, but this is not usually the case

### N-POINT CROSSOVER

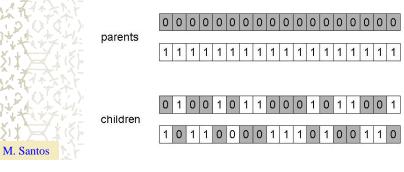


## **CROSSOVER OR MUTATION?**

- The cade long debate: which one is better / necessary
- **The Answer (at least, rather wide agreement):** 
  - it depends on the problem, but in general, it is good to have both
  - + both have another role
  - mutation-only-EA is possible, xover-only-EA would not work

## **UNIFORM CROSSOVER**

- Sign 'heads' to one parent, 'tails' to the other
- Flip a coin for each gene of the first child
- Make an inverse copy of the gene for the second child
- **&** Inheritance is independent of position



## **CROSSOVER OR MUTATION?**

- **Exploration:** Discovering promising areas in the search space, i.e. gaining information on the problem
- **Exploitation:** Optimising within a promising area, i.e. using information
- > There is co-operation AND competition between them
- Crossover is explorative, it makes a *big* jump to an area somewhere "in between" two (parent) areas
- Mutation is exploitative, it creates random *small* diversions, thereby
- staying near (in the area of ) the parent

## **CROSSOVER OR MUTATION?**

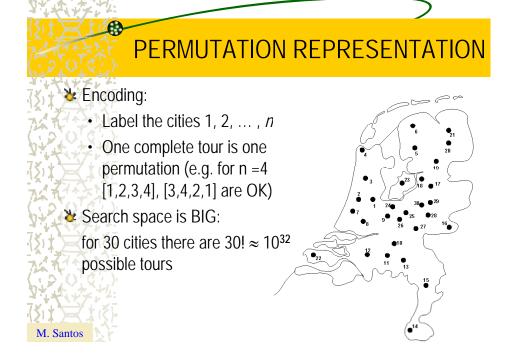
- Only crossover can combine information from two parents
- >> Only mutation can introduce new information (alleles)
- Crossover does not change the allele frequencies of the population (thought experiment: 50% 0's on first bit in the population, ?% after performing *n* crossovers)
- To hit the optimum you often need a 'lucky' mutation

## A SIMPLE EXAMPLE

The Traveling Salesman Problem:

M. Santo

Find a tour of a given set of cities so that – each city is visited only once – the total distance traveled is minimized



## REPRESENTATION

Representation is an ordered list of city numbers known as an *order-based* GA.

1) London3) Dunedin5) Beijing7) Tokyo2) Venice4) Singapore6) Phoenix8) Victoria

 CityList1
 (3
 5
 7
 2
 1
 6
 4
 8)

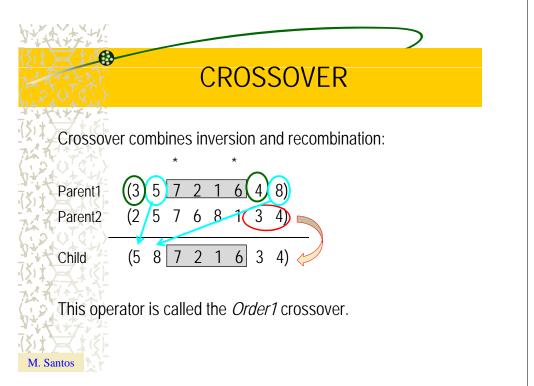
 CityList2
 (2
 5
 7
 6
 8
 1
 3
 4)

## CROSSOVER OPERATORS FOR PERMUTATIONS

 Normal" crossover operators will often lead to inadmissible solutions



Many specialised operators have been devised which focus on combining order or adjacency information from the two parents

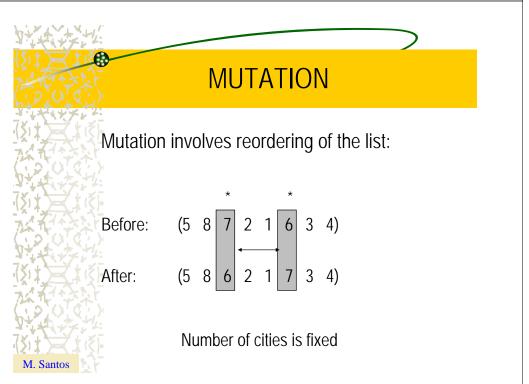


#### **MUTATION FOR PERMUTATIONS**

- Vormal mutation operators lead to inadmissible solutions
  - e.g. bit-wise mutation : let gene *i* have value *j*
  - Changing to some other value *k* would mean that *k* occurred twice and *j* no longer occurred
- Therefore must change at least two values

M. Santos

Wutation parameter now reflects the probability that some operator is applied once to the whole string, rather than individually in each position



#### REFERENCES

- Santos M., de la Cruz JM., Algoritmos genéticos. Reverté, 2005
   Goldberg, D.E. Genetic algorithms in search, optimizacion and
- machine learning, Adisson-Wesley, MA, 1989
- D. Beasley, D.R. Bull, Ralph R. Martin, An overview of genetic algorithms: Part I and II. University Computing, 15, 1993 (ralph.cs.cf.ac.uk/pub/papers/Gas/ga\_overview1 y 2.ps)
- Haupt RL, Haupt SE, Practical genetic algorithms. Wiley, 2004
- Holland, JH, Adpatation in natural and artificial systems. U Michigan Press, 1975
- Michalewicz Z, Genetic Algorithms + Data Structures = Evolution Programs. Springer Verlag, 1992
- Mitchell, M, An introduction to genetic algorithms. MIT Press, 1998
- www.cs.cmu.edu/Groups/AI/html/repository.html
- M. Santos

## SOFTWARE REFERENCES

- MATLAB Genetic Algorithm and Direct Search Toolbox
- EVOCOM (<u>http://pc-isa2.dacya.ucm.es/evocom</u>
- COAL (freeware). Visual Basic

M. Santos

- (www.geocities.com/geneticoptimization)
- Free software (C, C++, Visual Basic, Perl, ...)
- (www.geneticprogramming.com/ga/GAsofware.html)
- www.cs.cmu.edu/Groups/AI/html/repository.html