
1

Bruno Barberi Gnecco Bruno Barberi Gnecco brunobg@lsi.usp.brbrunobg@lsi.usp.br
Marcelo de Marcelo de PaivaPaiva GuimarãesGuimarães paiva@lsi.usp.brpaiva@lsi.usp.br

Integrated Systems LaboratoryIntegrated Systems Laboratory
Polytechnic School Polytechnic School -- University of University of SãoSão Paulo Paulo -- BrazilBrazil

October/2003October/2003

This presentation introduces Glass.



2

What is Glass?What is Glass?

•• A library for distributed computingA library for distributed computing
–– Extensible and flexibleExtensible and flexible
–– Portable and interoperablePortable and interoperable
–– Easy to use and learn: transparentEasy to use and learn: transparent
–– High performanceHigh performance
–– Network protocol independentNetwork protocol independent
–– Reliable and fault tolerantReliable and fault tolerant
–– Completely thread safeCompletely thread safe

Glass is a new library for distributed computing. It was designed to fulfill a number of 
requirements:
•Extensibility and flexibility: the library must the easy to extend, without requiring API changes or 
even recompilation. This way, it will be always up-to-date with the latest technologies and be able 
to solve specific needs of users.
•Portable and interoperable: distributed computing is everyday more heterogeneous. The library 
must not only run in different architectures and operating systems, but interoperate among them.
•Easy to use, fast learning curve: distributed APIs tend to be complicated, requiring a lot of time to 
understand and master. Most libraries provide a huge number of functions, many of them with a 
high number of arguments. It’s hard to learn and remember. Frameworks require a new approach 
to the programming, and therefore have a steep learning curve. Glass had to be easy to use, 
being almost transparent do the user: that’s where it name comes from.
•High performance: if an application requires distributed computing, it’s because it has a high 
computational cost. Glass must be as light as possible.
•Network protocol independent: an abstraction of the underlying network protocol makes Glass 
protocol independent. You can use TCP, UDP, or even more high level systems such as MPI 
easily. Just instantiate the proper network class. This is very important in a world where 
applications have hugely different network requirements.
•Reliable and fault tolerant: any distributed computing library must be reliable and fault tolerant. 
It’s unacceptable that the failure of a node will bring down the entire computational system. Glass 
had to provide fault tolerance automatically, and be reliable to make sure that faults would be as 
rare as possible.
•Completely thread safe: many APIs are note thread safe. This forces the user to find 
workarounds or use other solutions in place of threads. Glass had to work in thread applications 
seamlessly.



3

MotivationMotivation

•• Many libraries and frameworks aroundMany libraries and frameworks around
•• Why another one?Why another one?

–– Most are hard to learn or useMost are hard to learn or use
–– Few support for graphical applications needsFew support for graphical applications needs

•• Low delays, synchronization, etcLow delays, synchronization, etc

–– Those that do are too specificThose that do are too specific
–– Frameworks require complete rewrite of legacy codeFrameworks require complete rewrite of legacy code
–– Even if not so, it’s not trivial to port existing codeEven if not so, it’s not trivial to port existing code

•• Born from Born from DICElibDICElib

With many libraries and frameworks out there, why write another one? First, as 
mentioned, most are hard to learn and use.
Second, one of Glass’ goals was running graphical applications on clusters. 
Graphical applications have specific requirements which include: low delays, fast 
synchronization, good bandwidth, etc. Not all available APIs fit these 
requirements. And those that do are usually too specific: they target 
multiprojection, for instance, not giving much importance to the underlying 
computational process. They usually provide good resources for graphics (such 
as scene graphs), but are not good for a intensive physical simulation.
The frameworks around require rewriting the existing code, since it has to adapt 
to the new paradigm. Most of them consider the application an object, and so the 
application has to fit a certain API. Legacy code may take a good time to port, 
and many times the result is a kludge.
Glass was born out of DICElib, a previous project of the Integrable Systems 
Laboratory of Polytechnic School of the University of São Paulo. DICElib was a 
small library that solved a few specific problems of multiprojection applications 
running on clusters; due to its inflexibility and limitations, we decided to write 
something new. DICElib was an important step, however, to find out the things 
we really needed and to learn from our mistakes.



4

OverviewOverview

•• Written in C++Written in C++
–– Easy to interface with C, C++, Java, etcEasy to interface with C, C++, Java, etc

•• Glass core provides internal functionalityGlass core provides internal functionality
–– Network systemNetwork system
–– PlugPlug--in managementin management
–– Node managementNode management

•• User never sees or knows about itUser never sees or knows about it

Glass is completely written in C++. The choice was due to it’s wide number of 
compilers and spread use, good performance, and certain features that would 
make the life of the programmer easier (such as OO and templates). C++ is easy 
to interface with C, Java and other languages, but C++ is the choice language for 
most of Glass target current applications.
A core provides all internal functionality, such as the network system, plugin
managements (more about plugins in a moment), node management, etc. The 
user is completely oblivious to this core.



5

OverviewOverview

•• A class is responsible for the node A class is responsible for the node behaviourbehaviour
–– ServerServer
–– ClientClient
–– etcetc

•• Simple, yet flexibleSimple, yet flexible
–– Just change this class and you change the network Just change this class and you change the network 

topologytopology
–– No other changes necessary!No other changes necessary!

All he does is instantiate a class that is responsible for the behaviour of that 
particular node. For example, the node may be a server, or a client, or a peer. 
You can write new classes easily, changing the underlying network topology to fit 
your needs and gain performance. It’s a simple system, but quite effective, and 
unparalleled. 



6

OverviewOverview

•• Fault tolerantFault tolerant
–– If a node dies, Glass detects and deals with it.If a node dies, Glass detects and deals with it.
–– Computation does not stopComputation does not stop
–– Deadlocks are preventedDeadlocks are prevented

•• Dynamic Dynamic 
–– Nodes can join or quit at anytimeNodes can join or quit at anytime

Fault tolerance is a important feature of Glass. Our idea is that only a 
catastrophic event such as your network switch blowing up would stop your 
application.
If a node dies, for an example --- for whatever reason --- Glass detects and deals 
with it. The computation does not stop, and resources held by that node 
(synchronization barriers, for instance) are automatically freed, avoiding 
deadlocks. This system is transparent to the user. 
Something that is annoying in many APIs is that nodes may only join the 
computation at a specific time, when starting the application. In a world which is 
moving to grid systems, this is unacceptable. In Glass, nodes can join or quit at 
anytime. Deadlocks are prevented automatically. Initial synchronization is made 
automatically, no matter if your distributed application is a realtime renderer or 
does a very long offline simulation. 



7

PluginsPlugins

•• All functionality is provided by All functionality is provided by pluginsplugins
–– Completely extensibleCompletely extensible
–– No need to recompile libraryNo need to recompile library
–– Can add your own functionalityCan add your own functionality

•• PluginsPlugins work seamlessly, transparently work seamlessly, transparently 
with Glasswith Glass
–– User should do nothing but declare a variableUser should do nothing but declare a variable
–– Register themselves automaticallyRegister themselves automatically

All functionality of Glass is provided by plugins. This is what makes Glass an 
extensible, flexible system. The plugin system does not require recompilation of 
the library: they can be part of your executable, or an external library. It’s 
possible, then, to extend Glass to fit your exact needs in a simple, straightforward 
manner.
The plugins are autonomous, and register themselves automatically. The user
doesn’t have to know anything about them, initialize them: to him, plugins are 
transparent and accessed by a simple API, usually looking like a variable 
declaration. We are going to see some examples.



8

Default Default pluginsplugins

•• PluginsPlugins that come with Glass right now:that come with Glass right now:
–– Synchronous shared variablesSynchronous shared variables
–– Synchronization barriersSynchronization barriers
–– EventsEvents
–– AliasesAliases

Glass right now has four tested, stable plugins:
•Synchronous shared variables
•Synchronization barriers
•Events
•Aliases



9

Shared variablesShared variables

•• Extremely useful for small amounts of Extremely useful for small amounts of 
datadata

•• Synchronous: avoids consistency problemsSynchronous: avoids consistency problems
•• Easy to useEasy to use
•• Type independentType independent

–– Can be of user defined types (classes, Can be of user defined types (classes, structsstructs))

Shared variables are a form of shared memory. They are extremely useful for 
certain kinds of applications, and are usually efficient for small amounts of data 
(up to a few Mb), although nothing prevents you from sharing gigabytes. These 
variables are synchronous: the user specifies when they should be updated 
globally, and when the variables should be synchronized with the global value. 
This system is easy to use and avoids all sorts of consistency problems that 
plague shared memory systems.
Shared variables are type independent: you can use them with floats, ints, 
classes, structs, whatever you want. You can provide your own serialization 
functions. The use of templates and OO features such as operator overloading 
make the syntax easy.



10

Shared variablesShared variables

•• SmartSmart
–– Don’t send unneeded dataDon’t send unneeded data
–– PrefetchPrefetch/cache data/cache data
–– Handle concurrent writing in a predictable Handle concurrent writing in a predictable 

wayway

Shared variables have some smartness built into them. They don’t send 
unneeded data: only if the variable was changed data is sent. This frees the user 
of worries of network utilization and optimization. They can prefetch and cache 
data, effectively reducing delays and balancing network usage. 
Concurrent writing is handled in a predictable way: each Glass node has an 
associated id, which is a positive integer. Smaller integers have priority, so if two 
nodes write to the same variable, the one with smallest id will prevail. Thus the 
final value is the same, whatever order the writes were made. This consistent 
behaviour avoids Heisenbugs.



11

Shared variables Shared variables –– exampleexample

Shared<Shared<intint> *i = new > *i = new 
Shared<Shared<intint>(“i”);>(“i”);

……
*i = 10;*i = 10;
ii-->>sendUpdatesendUpdate();();
……
ii-->>getUpdategetUpdate();();

Declare it. Constructor 
does everything.

Use as a normal 
variable!

Get update. Ensures that you 
have the current value.

Send update when you want. 
Another thread handles the 

network: doesn’t block!

Here’s a sample code of Shared variables. You declare it pretty much as a 
normal variable --- the only difference is that you enclose the type with Shared<>,
and provide a string name, so it can be identified in other nodes. As you can see, 
you can use it as a normal variable. This makes shared variables just as easy to 
use as normal variables. To send the current local value, updating the global 
value, you call sendUpdate. When you want to get the current global value, call 
getUpdate. Simple and effective. Global consistency can be achieved with the 
used of a synchronization barrier.



12

Synchronization barriersSynchronization barriers

•• Important for graphic applicationsImportant for graphic applications
–– DatalockDatalock
–– FramelockFramelock

•• Can have up to 2Can have up to 26464 distinct barriersdistinct barriers
•• Easy way to deadlockEasy way to deadlock

–– Glass does the possible to avoid itGlass does the possible to avoid it
–– System to ensure that even late starters System to ensure that even late starters 

synchronize correctlysynchronize correctly

Synchronization barriers are crucial for graphic applications, where you have to 
datalock and framelock (genlock is hardly ever done with software, due to its 
nature). Glass provides a simple, fast, effective barrier system. Up to 2^64 
different barriers can be used, so you can have different synchronization points in 
your code and make sure that they are never confused.
Synchronization barriers are an easy way to deadlock your program: all it takes is 
that one node calls a barrier and another call some other barrier. This is a 
problem specially when not all nodes start to compute together: late starters will 
most likely deadlock if nothing is done, since there are no guarantees that when 
they call their first barrier, the other nodes will do that too. Glass, however, treats 
this situation transparently, ensuring that even late starters synchronize correctly 
and do not deadlock.
If a deadlock happens, however, Glass can detect it. We are researching the best 
way to deal with this problem.



13

Synchronized barriers Synchronized barriers –– exampleexample

Barrier b = new Barrier(1);Barrier b = new Barrier(1);
Barrier c = new Barrier(2);Barrier c = new Barrier(2);
……
bb-->sync();>sync();
……
cc-->sync();>sync();

Declare barriers. You 
provide the id here.

Synchronize 1st barrier.

Synchronize 2nd barrier.

Here’s an example of an application that uses two synchronization barriers. They 
can be, for example, datalock and framelock of a graphical application, called 
sucessively in an infinite loop. Glass takes care that a new node will correctly 
synchronize and not deadlock even if, when it starts and calls b->sync(), the 
other nodes are calling c->sync(). 



14

EventsEvents

•• Basically a queueBasically a queue
–– All nodes receive events in the same orderAll nodes receive events in the same order

•• Type independentType independent

Events are basically a queue, or FIFO, of values. They are quite useful for 
propagating asynchronous changes or events in an application --- there’s plenty 
of them in interactive applications, like input events (keyboards, mice, etc). Just 
like shared variables, they are type independent.



15

Events Events –– exampleexample

Event<Event<intint> *e = new > *e = new 
Event<Event<intint>(“e”);>(“e”);

……
ee-->enqueueEvent(12);>enqueueEvent(12);
ee-->enqueueEvent(383);>enqueueEvent(383);
……
intint x = ex = e-->>getEventgetEvent();();

Declare an event

Enqueue data.

Get top of queue.

It should be quite familiar by now: it’s the same syntax used in shared variables. 
You can enqueue events, which are immediately sent to all nodes that have that 
event declared. The events are stored in an internal FIFO, and you can get them 
when you want. Optionally, you can set a callback that is called whenever an 
event arrives.



16

AliasesAliases

•• MultiprojectionMultiprojection environmentsenvironments
–– How to make each node calculate a different view?How to make each node calculate a different view?

•• Solution: aliasesSolution: aliases
–– Same function, different Same function, different behaviourbehaviour on each nodeon each node
–– Works with variables too: same variable, different Works with variables too: same variable, different 

valuesvalues
•• Original approachOriginal approach
•• Similar to pointersSimilar to pointers

–– But remote, clean, safeBut remote, clean, safe
•• Great for load balancing!Great for load balancing!

One of the major problems of multiprojection environments is: how do you tell 
each node to calculate a different view? We wanted a clean, flexible solution, not 
a hardcoded kludge. Our solution is aliases.
Let’s say that I have three different nodes, rendering the front, left and right 
views, respectively. What if I could just call a function, set_view(), which would 
automatically find out which view we should calculate? This function would set up 
the camera, and then you would call your render() function. That’s what aliases 
do. They are a single function, with different behaviour on each node.
Aliases can be variables, too. It’s the same idea: the same variable has different 
values on each node, but you can control these values remotely. This is an 
original approach: it was first used in a very limited way by DICElib.
You can think of aliases as pointers: you have a pool of possible values, and you 
choose which one should be used. But, unlike pointers, aliases awork remotely, 
are clean and safe. 
There are many uses for aliases! Since you can change the value of an alias in a 
remote node, they are great for node balancing.



17

Aliases Aliases –– exampleexample

void void view_left(voidview_left(void) { … }) { … }
void void view_right(voidview_right(void) { … }) { … }
void void view_front(voidview_front(void) { … }) { … }
……
Alias<void (*)(void)> *view = new Alias<void Alias<void (*)(void)> *view = new Alias<void 

(*)(void)>(“view”, (*)(void)>(“view”, view_frontview_front););
……
viewview-->>setAlias(“frontsetAlias(“front”, ”, view_frontview_front););
viewview-->>setAlias(“rightsetAlias(“right”, ”, view_leftview_left););
viewview-->>setAlias(“leftsetAlias(“left”, ”, view_rightview_right););

Your functions.

Declare your alias here, with its 
type, name, and default value.
Declare your alias here, with its 
type, name, and default value.

Set its aliases to values here. 
You are associating a string 
with a possible value, so you 
can set its value remotely, in 

any node.

Here’s an example of aliases. Remember that multiprojection application I told 
you about? Here’s its core. You have the three functions that set the view 
apropriatedly.
Then you instantiate your alias. Call it “view”. It’s type is void (*)(void), that is, a 
function that as no arguments or return value. You need to provide a default 
value: we don’t allow NULL aliases here, making them safe. Whenever you call it, 
Glass guarantees a valid result.
Next step: define the possible values of an alias, associating a keyword with each 
of them. This provides a way to set values of alias in other nodes, which is rather 
important when you want to do load balancing, or be able to change the view 
being rendered on another node.



18

Aliases Aliases –– exampleexample

viewview-->setValue(3, “front”);>setValue(3, “front”);
viewview-->setValue(4, “right”);>setValue(4, “right”);
viewview-->setValue(5, “left”);>setValue(5, “left”);
……
void (*void (*func)(voidfunc)(void) = view) = view-->>getValuegetValue();();
funcfunc();();

Set the values of 
target node. The 
changes happens 

immediately.

Get the value of the alias in this node, and 
then call it to set our view. These two lines 

should go in your render loop.

Our last step in setting up aliases is actually setting the values on each node. 
Here we want node 3 rendering the front view, node 4 rendering the right view, 
and node 5 rendering the left view. You can change these values at any time, 
and you can set two nodes with the same value. 
Now that everything is ready, you can use aliases. Just get its current value and 
use it.



19

Creating Creating pluginsplugins

•• Easy to do: derive your Easy to do: derive your pluginplugin from a base class, from a base class, 
PluginBasePluginBase
–– Singleton classSingleton class

•• Write two methods:Write two methods:
–– Packet handlerPacket handler
–– Node Node unregisterunregister

•• User shall not call your User shall not call your pluginplugin directlydirectly
–– Provide an API class, derived from Provide an API class, derived from PluginInterfacePluginInterface
–– User will instantiate this classUser will instantiate this class

Plugins are easy to create: derive your plugin from a base class, PluginBase. 
Each plugin has only a single instance running per Glass instance, so it’s a 
singleton. This is because the user should not call the plugin directly, but using 
an interface class. This design provides a separation between the interface and 
the functionality, and hides complexity from the user.
A plugin has two virtual methods that you must override: the packet handler, 
responsible for processing network packets that arrived for this plugin, and a 
method to unregister any nodes that quit the computation --- this is part of the 
fault tolerance system; this way, even if a node dies, the plugins guarantee their 
internal integrity.
The interface base class is a very simple class that provides a few protected 
methods, invisible to the user. These methods can be used to access data from 
Glass, from the parent plugin, to send data across the network, etc.



20

There are more things in heaven There are more things in heaven 
and earth, Horatioand earth, Horatio

•• Glass is not only a passive libraryGlass is not only a passive library
–– It’s a It’s a tooltool for distributed programmingfor distributed programming

•• Software should:Software should:
–– Be smartBe smart
–– Be reliableBe reliable
–– Take care of the programmerTake care of the programmer

•• Tools for programming and debuggingTools for programming and debugging

Glass is not a simple library: it’s a tool for distributed programming. In other 
words, Glass has to help the user.
In the opinion of authors, software should not be passive. It should:
•Be smart: do things automatically, solve problems autonomously.
•Be reliable: fault tolerance is a must in distributed programming; Glass has been 
thoroughly tested, guaranteeing a solid core.
•Take care of the programmer: the software should take care of the programmer, 
and not the opposite. The programmer should use the software as a tool to 
simplify his job, and not fight with it to achieve what he wants.
Glass comes with tools for programming and debugging, simplifying its use.



21

Automatic deadlock detectionAutomatic deadlock detection

•• Glass can find deadlocks of its own Glass can find deadlocks of its own 
primitivesprimitives

•• Upon detection:Upon detection:
–– If possible, handle it transparentlyIf possible, handle it transparently

•• Such as a node deathSuch as a node death

–– Otherwise, programs are notified and may Otherwise, programs are notified and may 
restart from a known pointrestart from a known point
•• This part is still being writtenThis part is still being written

Deadlocking is one of the biggest problems in distributed programming. Even 
though it’s possible to detect deadlocks automatically in most situations, almost 
no solutions provide this feature. Glass can detect and handle deadlocks 
automatically, most of the time in a completely transparent way. The programmer 
doesn’t even know that a deadlock occurred or might have occurred: barriers 
behave this way, for instance, when a node dies or a new node connects.
If the deadlock can’t be handled in a transparent way, the application is notified 
and can restart from a known point. 



22

GTraceGTrace

•• When developing When developing pluginsplugins, you may want , you may want 
to see packet trafficto see packet traffic
–– Part of debugging processPart of debugging process

•• Glass can log the packetsGlass can log the packets
•• GTraceGTrace can show the time diagram can show the time diagram 

graphicallygraphically
•• Cuts debug time dramatically!Cuts debug time dramatically!

GTrace is a important tool to debug plugins. Your plugins will use the network to 
send information among nodes, and it’s important to see that the packets are 
being correctly sent when debugging: it’s a fast way to find where your code may 
be wrong.
Glass network abstraction layer can log the packets that are sent and arrive. You 
can then see the time diagram in a graphical application, called GTrace. It usually 
takes a glance to find out what packets are wrong: graphical debugging is much 
easier and faster than reading long text output.



23

GTraceGTrace: screenshot: screenshot

Here’s a screenshot from GTrace: on the left, you can select which nodes you 
want to see the log. On the left, the packets are shown. Note that you can filter 
the packets, displaying only those that you are interested in: for example, those 
of your plugin. 



24

PDA EditorPDA Editor

•• Born from desire to control our CAVE with Born from desire to control our CAVE with 
a PDAa PDA

•• Why not run Glass in it? We do.Why not run Glass in it? We do.
•• Proof of performance and portabilityProof of performance and portability
•• Editor generates GUI in a straightforward, Editor generates GUI in a straightforward, 

graphical waygraphical way
–– No programming knowledge requiredNo programming knowledge required

We wanted to control our CAVE applications from a PDA. A PDA is a nice 
interface to control such applications: it’s a very, very rich remote control. The 
interface is dynamical, easy to use. How to do it? Well, use Glass. Glass’ 
portability and performance makes it possible to run it anywhere: PDAs, 
embedded devices, desktops, workstations. 
We developed a graphical editor, which lets the user generate a GUI to run in the 
PDA is a straightforward way. No programming knowledge is required to create 
the GUI!



25

PDA EditorPDA Editor

•• Code is generated automaticallyCode is generated automatically
–– Programmer has only to write an event Programmer has only to write an event 

handlerhandler

•• Interface is in JavaInterface is in Java
–– Run it anywhere: PDA or desktopRun it anywhere: PDA or desktop

•• Glass is used underneathGlass is used underneath
–– To Glass, the PDA is just another nodeTo Glass, the PDA is just another node

The final code is generated automatically: a skeleton code is generated, which is 
used on the Glass aplication itself to process the events. It’s pretty much like 
processing keystrokes from a keyboard.
Both the editor and the generated GUI are in Java: it’s easy to run it anywhere. 
Glass is used underneath, via native methods. To the application, the PDA is just 
another node. 



26

PDA Editor: screenshotPDA Editor: screenshot

Here are two shots of the PDA system. On the left, a PDA running Glass. On the 
left is the editor itself. You just have to associate hotspots with events. 



27

What are we doing with Glass right What are we doing with Glass right 
now?now?

Our main motivation for writing Glass was for running distributed real time 
graphical applications: virtual reality, scientific visualization, etc. That’s what we 
have been doing lately: the picture shows an architectural visualization system 
running at our lab’s CAVE. Each wall is being rendered by a different node of a 
PC cluster.



28

The futureThe future

•• New New pluginsplugins
–– Grid computingGrid computing
–– Distributed Distributed filesystemsfilesystems
–– Streaming dataStreaming data
–– RPCRPC

•• New network protocolsNew network protocols
–– UDP with multicastUDP with multicast

•• OptimizationsOptimizations

What is in the future?
New plugins are an obvious choice. We plan to add support for grid computing, 
distributed filesystems, streaming data, RPC and more. New network protocols, 
such as UDP with multicast or FastTCP are planned. Optimizing the core of the 
library itself is something else in our to do list.



29

ConclusionsConclusions

•• Addresses problems that pestered Addresses problems that pestered 
distributed programming for a LONG timedistributed programming for a LONG time

•• Programmer should not be botheredProgrammer should not be bothered
–– Should program only what he REALLY has toShould program only what he REALLY has to
–– API should be high level: it’s hard enough to API should be high level: it’s hard enough to 

create distributed applications, one should not create distributed applications, one should not 
have to fight with APIshave to fight with APIs

–– All that can be done automatically must be All that can be done automatically must be 
done sodone so

Glass was designed to solve some problems that have been pestering distributed 
programming for a long time, and have always been considered a burden that the 
programmer should carry. In our new paradigm, the programmer should not be 
bothered. He should only have to program what is REALLY necessary: anything 
that can be done for him, will be done automatically. The API is high level: there’s 
already enough difficulty in designing and coding distributed algorithms and 
applications; fighting with an API to do something is counter-productive.



30

ConclusionsConclusions

•• Porting most RV applications is easy nowPorting most RV applications is easy now
–– Simple applications take usually half an hourSimple applications take usually half an hour

•• Extensibility is primordialExtensibility is primordial
–– A library should free the user, not constrain A library should free the user, not constrain 

him! him! 
–– Whatever you need, you can do with GlassWhatever you need, you can do with Glass

•• Compact, well tested core provides a Compact, well tested core provides a 
reliable basereliable base

When designing Glass, we were concerned with the existing code base; we saw 
how difficult was to port some applications to other frameworks. Porting a simple 
graphical application (say an OpenGL demo) takes about half an hour. 
Extensibility is the most important feature, in our opinion: it allows the 
programmer to modify Glass to fit his exact needs. A library is supposed to free 
the programmer: when he is constrained by it, something is definitely wrong! 
Whatever is your need, Glass can do it. Just write a new plugin.
Glass’ core is a compact, thoroughly tested code that provides a reliable base. 



31

ConclusionsConclusions

•• Distributed computing MUST be fault Distributed computing MUST be fault 
toleranttolerant
–– It’s unacceptable that failure in one node will It’s unacceptable that failure in one node will 

halt the entire systemhalt the entire system
–– This must be done automaticallyThis must be done automatically

Last, but not least, distributed computing must be fault tolerant. When you are 
running an application on tens of nodes, it’s unacceptable that a single problem in 
one node brings the entire application down. The library must be able to handle 
faults, and, when possible, in a completely automatic and transparent way.



32

WebsitesWebsites

•• DICElibDICElib
–– http://www.lsi.usp.br/~brunobg/dicelib/http://www.lsi.usp.br/~brunobg/dicelib/

•• GlassGlass
–– http://www.lsi.usp.br/~http://www.lsi.usp.br/~brunobg/glass/brunobg/glass/



33

ReferencesReferences
•• GuimarãesGuimarães, Marcelo de , Marcelo de PaivaPaiva; Gnecco, Bruno Barberi; ; Gnecco, Bruno Barberi; 

Cabral, Cabral, MarcioMarcio; ; BressanBressan, Paulo , Paulo AlexandreAlexandre; ; ZuffoZuffo, Marcelo , Marcelo 
KnörichKnörich. . Synchronization and data sharing library Synchronization and data sharing library 
for PC clusters.for PC clusters. VRVR--CLuster'03 CLuster'03 -- Workshop on Workshop on 
Commodity Clusters for Virtual Reality Los Angeles, USA. Commodity Clusters for Virtual Reality Los Angeles, USA. 
March 22thMarch 22th--26th.26th.

•• GuimarãesGuimarães, Marcelo de , Marcelo de PaivaPaiva; Gnecco, Bruno Barberi; ; Gnecco, Bruno Barberi; 
ZuffoZuffo, Marcelo , Marcelo KnörichKnörich. . FerramentaFerramenta de de geraçãogeração de de 
interfaces interfaces gráficasgráficas parapara PDAsPDAs.. SimpósioSimpósio BrasileiroBrasileiro de de 
RealidadeRealidade Virtual, Virtual, RibeirãoRibeirão PretoPreto, , OutubroOutubro de 2003. de 2003. 

•• Gnecco, Bruno Barberi; Gnecco, Bruno Barberi; GuimarãesGuimarães, Marcelo de , Marcelo de PaivaPaiva; ; 
ZuffoZuffo, Marcelo , Marcelo KnörichKnörich. . Um Um frameworkframework flexívelflexível e e 
transparentetransparente parapara computaçãocomputação distribuídadistribuída de alto de alto 
desempenhodesempenho.. SimpósioSimpósio BrasileiroBrasileiro de de RealidadeRealidade Virtual, Virtual, 
RibeirãoRibeirão PretoPreto, , OutubroOutubro de 2003. de 2003. 


