
JINX: An X3D Browser for VR Immersive Simulation
Based on Clusters of Commodity Computers

Luciano P. Soares
lsoares@lsi.usp.br

Marcelo K. Zuffo
mkzuffo@lsi.usp.br

Laboratório de Sistemas Integráveis
Departamento de Engenharia de Sistemas Eletrônicos

Escola Politécnica da Universidade de São Paulo

Abstract

In this paper we present JINX, a fully distributed virtual
environments browser, which has a special support for commodity
computer clusters and immersive visualization devices. The
presented mechanism intends to be fast and easy to use to develop
virtual reality applications based on the X3D format, enabling
great flexibility for displays and interaction devices, allowing
users to concentrate only on content creation. JINX provides
support for nodes synchronization and resources sharing, from
Framelock to Datalock. This paper describes the background of
the decisions made and the problems that had to be overcome.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism – Virtual reality; I.3.2 [Computer
Graphics]: Graphics Systems – Distributed/networks graphics

Keywords: X3D, Cluster Computing, Parallel Rendering

1 Introduction

Three-dimensional virtual experiences are important steps in
many fields of science and industry, and one of the reasons of
their success is the availability of commodity computers with
powerful 3D resources. Therefore commodity computer clusters
are becoming a feasible solution for immersive visualization
systems, since they provide the necessary hardware to support
screens synchronization.

The goal of this paper is to present JINX, a tool that allows users
to develop distributed virtual reality applications, based on the
recent developments in commodity computers clusters. The
application development consists of either programming in
graphical APIs, like OpenGL routines or, the main focus, writing
X3D [X3D] files. At the moment we support the X3D Interchange
profile and we are almost finishing the Interactive profile. Also
part of the Immersive profile was already done. JINX was created
to be easy to understand and program. Although this solution is
focused on commodity clusters, JINX also supports traditional
graphical supercomputers, because those are widely available in
traditional virtual reality facilities.
--

The parameters for the physical and virtual environment can be
set very quickly. An XML file defines the configuration. XML
was chosen because it does not limit neither the semantics nor the
tag set, it allows the construction of richly structured documents
that can be used over the web, and it is open source. It is also
possible to send other kind of data, like images or sound through
the network. This simple structure is fully supported and easy to
read and change, even in complex situations.

The system is based on modules, therefore the user can increase
special support to other capabilities, for instance, visual and audio
system resources. This project is intended to be a public domain
programming library, running on different Linux distributions and
also on IRIX.

This paper is organized as follows: Section 2 presents a
background in distributed systems, virtual reality and immersive
systems, and also some previous work conducted in this field.
Section 3 presents the communication system: from
synchronization to data transfer. Section 4 regards the scene graph
of X3D. Section 5 explains the modularity of the system. Section
6 presents the navigation and interaction logic. Section 7 explains
how to develop an application. Finally section 8 presents some
conclusion and future work.

2 Background and related work

Virtual reality has been used for a long time in different
application domains like science, engineering and art. But there
are still many possible fields of research and applications that
create a new demand for hardware and software solutions. An
attractive and yet expensive solution for immersive visualization
systems is the use of graphical supercomputer based upon which
many tools for the development of virtual reality immersive
systems were developed. Nevertheless, this kind of solution
creates a great dependency on the manufacturer. We strongly
believe that the commodity cluster technology can facilitate the
access to powerful and low cost virtual reality systems [Zuffo et
al. 2002].

The commodity clusters have been used for the solution of
numerical problems, and in the last couple of years some research
centers started to think about its use in virtual reality. This is a
powerful and scalable solution but it creates many issues related
to programming VR environments such as synchronization, data
distribution and managing. The traditional graphic
supercomputers avoid this problem, since they provide
customized facilities for high performance programming of virtual
reality environments. Framelock and Datalock are important
issues for cluster based virtual reality environments, and in our
approach these syncs could be provided without the use of
specific hardware.

http://www.web3d.org/TaskGroups/x3d/X3DSpec_CD_Preview/Part01/interchange.html
http://www.web3d.org/TaskGroups/x3d/X3DSpec_CD_Preview/Part01/interchange.html
http://www.web3d.org/TaskGroups/x3d/X3DSpec_CD_Preview/Part01/interactive.html

Some solutions for distributed virtual reality applications are
available in scientific literature. The Syzygy [Schaeffer and
Goudeseune 2003] is a library that allows the user to create
powerful applications for clusters environments. It takes care of
all the issues of synchronization, and has a very robust solution
for network connection. But the Syzygy approach creates some
complexity for the development of new applications. This is a
problem for content developers that are not familiarized with
programming.

Another approach comes from the VRJuggler [Bierbaum et al.
2001; Allard et al. 2002]. There are two distributions for cluster
environments: NetJuggler [Allard et al. 2002] and Cluster Juggler
[Bierbaum et al. 2003]. The VRJuggler is a powerful library that
supports the development of virtual reality environments, but is
not user-friendly. It has support for OpenSG [OpenSG], which
creates some flexibility for content creation. Avango [Tramberend
1999] and Lightning [Stoll et al. 2001] has also some support for
cluster, and some research has been done to make it more scalable
[Hinkenjann et al. 2002]. Finally X-Rooms [Isakovic et al. 2002]
is a distributed solution that provides support to online web
content using a modified VRML browser. It has powerful
capabilities like speech recognition and stereo video streaming,
but it is restricted to passive stereo.

X3D is a new standard and just recently some browsers have been
released. Xj3D [Xj3D] is the most important one, developed in
Java and Java3D. It is used as a testing ground for X3D, but it
does not yet support cluster distribution. The X3D format creates
many advantages for our implementation. First of all this is a open
standard, then it is easier to have a conformance content, also the
simplicity of this scene graph is very powerful for distributed
systems.

Our work is an innovative contribution since it is an integrated
approach to a modular system that allows the user to run the
application in virtually any platform. This modular system lets the
user change any device specific platforms commands. For
instance, it is possible to easily change between MPI and Sockets.
Also, with the use of X3D, a great freedom of development is
achieved, smoothing the transfer between the modeling tools and
the virtual environment.

3 Communication

3.1 Synchronization

The application presented in this paper allows the user to choose
the communication system between the processes. At this moment
MPI [Pacheco 1997] and TCP/IP sockets network streams are
supported. All the information, like the user position, direction
and speed is packed and transmitted by networking every frame,
since this information is not too big. In a dedicated fast-Ethernet
connection it is possible to get a maximum frame rate of about 60
f/s and in a gigabit-Ethernet of about 240 f/s. We chose MPI
because it is broadly supported and many network systems
support some sort of MPI distribution.

An important feature of the system is the Framelock and
Datalock. In the solution proposed, this is done mainly by a
barrier function. The Framelock blocks the graphical processes
until all of them conclude their own image rendering. When all of
them finish their rendering, a command that is issued at the same
time in all graphical processes, swaps the frame buffer. Figure 1
shows a system with two displays one synchronized and one not

synchronized. The Datalock is basically necessary to guarantee
the integrity of the information in the nodes along the process and
to avoid coherence problems.

Figure 1 - Image with and without Framelock and Datalock

A suggested intermediate locking is the Timelock, because X3D is
animated and based on a specific time, therefore all computer
nodes receive a time update at each frame, based on the master
clock, and it is possible to predict the animation of the virtual
objects, based on this time.

Genlock is also an important resource for distributed
environments. In complex cluster-based immersive visual
environments, many video signals are necessary to show the
images. The Genlock provides controls to synchronize multiple
screens, Genlock performs four main functions: vertical,
horizontal, frame, and color synchronization and it is necessary in
active stereo systems, as the active glasses let you see a different
image for each eye on each video refresh. JINX does not provide
Genlock, but some graphics cards have a connector for the
Genlock signal, which makes it very simple to synchronize the
cards. If the graphics card does not support it, another solution is
necessary. One of them is Softgenlock [Allard et al. 2002], which
uses resources of a real time Linux kernel that allows sending
synchronization signals across the parallel port.

3.2 Connection

The application developed can run in many processes, which are
responsible for different activities. Figure 2 shows how the
messages are transmitted across the system. This approach allows
the use of heterogeneous clusters or even different architectures
for different tasks. For instance the joystick could be connected to
a node and the sound card to another one. This allows the use of
the cluster with great efficiency.

Figure 2 – Network Connection System Sample

The main process is the one responsible for the communication
with the other processes, and for sending synchronization
messages and merging the data to a common repository, letting
every node know about the state of the system.

There are many processes responsible for input treatment. The
input devices supported are: keyboard, mouse, Labtec space
mouse, any kind of joystick, Ascension electromagnetic tracker
and Intersense head tracking devices. All the information from
input devices is treated by the input, wand or head tracking
process, filtered, synchronized and sent to the master process, and
finally sent to the output processes, like video and sound
processes. If there are more than one input devices, it is possible
to rate all the device values.

Each input device works in a different way, returning information
in different styles. For instance, the tracker sends information in a
relative world position. This information has to be managed to fit
in the real world. Instead of having the processes reading the
devices directly, they can read the data generated by another
application that gets the hardware information, calculates the least
squares formula, converts the data to the real world coordinates
and sends it in an XML stream across the network. In this case the
device could be in any computer, outside the system. These
messages transferred between the processes should be managed so
as not to overflow any other device. The master node should send
some messages of acknowledgment to the input device processes
to control the quantity of messages transmitted. In the case of
using MPI, it buffers the transmitted message, and if it overflows
it loses interactivity.

The output devices supported are video and sound. It is possible to
use video with the correct stereoscopic view, for many kinds of
virtual reality environments, like CAVEs [Cruz-Neira et al.1993],
DisplayWall [Chen et al. 2002] or Spherical system [Fernandes et
al. 2003].

An important feature is the capability to correct the viewpoint of
the user, based on a head-tracking system. Usually it uses an
electromagnetic tracker for this. The rotation and movement of the
eyes should be informed to the computer, allowing it to redisplay
the image in a correct perspective. Figure 3 shows how the
perspective frustum transforms for an example viewpoint. For
stereo the image is similar, but there are two frustums with the
source separated by the eye distance.

Figure 3 – Perspective camera adjustment

The sound spacialization is very important; it radically helps the
feeling of immersion. For the immersion, sound sources points are
defined in the virtual space. Many speakers can be set around the
environment or the user can use some headphones. If the user is
using headphones, it is necessary to use some tracking system to
determine the user position and orientation in the environment.
Otherwise each sound connector in each cluster node could
control one sound speaker. The sound system is based on the
Fmod library [Fmod]. It has the feature to generate 3D sound
spacialization, making the user aware of where the sound is
coming from.

Finally, there is a process responsible for interaction, calculating
all the simulation necessary for the virtual environment, like
collision detection. It is also possible to use a DIS (IEEE 1278.2)
system to get and transmit information about simulation to a
dedicated system. DIS was originally used for military
applications and supports a wide range of data using PDU
packages to communicate. We are now looking for some DIS
server to use with JINX.

3.3 Tasks distribution

The communication across the processes should be as highly
efficient as possible. JINX takes advantage of the SMP systems,
that are common nowadays, and high-speed network connections,
defining a transparent protocol for communication. Posix threads
and MPI were chosen for each respective communication. The
processes are deployed to each node of the cluster based on a shell
script that internally uses the mpirun command to control which
computer will run the application.

SMP systems also use OpenMP for internal loops. Unfortunately
it is supported mainly in commercial compilers. The specified
communication protocol basically defines the following functions:
Send(), Receive(), Barrier(), Acknowledgment(), and some
variations. Then based in the dispatch script and the configuration
file, showed in Code 1, the program chooses the best way to start
the application in each node, which tasks it is responsible and how
to communicate with other processes. The dispatch script defines
what each node will take care of, like sound, video and input
devices. And the configuration file defines how each node works:
like screen resolution or speaker’s position. Sometimes one node

could have more than one viewport, this is a common case on Irix.
In these architectures it is possible to open many viewports in
different graphic pipelines.

<jinx>
 <navigation DEF="Navigation" />

 <computer hostname="sgi">
 <device DEF="FOB" dev="/dev/ttyd0" />
 </computer>

 <computer hostname="foo1">
 <device DEF="SpaceBall" dev="/dev/ttyS0" />
 <render>
 <wand DEF="Wand" type="mouse" />
 <window name="front" pipe=":0.0">
 <view mode="stereo" InterocularDistance="0.007" />
 <size width="640" height="640" fullscreen="TRUE" />
 <position x="0" y="0" />
 <screen dir="0 0 -1" up="0 1 0" />
 <frustum left="-1.5" right="1.5" bottom="-1.5" top="1.5"
 depth="1.5" />
 <center x="0" y="0" z="0" />
 <head DEF="Head" pos="0 0 0" rot="0 1 0 0" />
 <mask url="http://foo/mask.png" />
 </window>
 </render>
 </computer>

 <computer hostname="foo2">
 <device DEF="Joy1" dev="/dev/js0" />
 <sound>
 <speaker name="front1" channel="left" pos="2 2 0" />
 <speaker name="front2" channel="right" pos="-2 2 0" />
 <speaker name="headset" channel="headphone" />
 </sound>
 </computer>

 <ROUTE fromNode='FOB' fromField='position'
 toNode='Head' toField='position'/>
 <ROUTE fromNode='FOB' fromField='orientation'
 toNode='Head' toField='orientation'/>
 <ROUTE fromNode='SpaceBall' fromField='position'
 toNode='Wand' toField='position'/>
 <ROUTE fromNode='SpaceBall' fromField='orientation'
 toNode='Wand' toField='orientation'/>
 <ROUTE fromNode='Joy1' fromField='move'
 toNode=' Navigation ' toField='move'/>
 <ROUTE fromNode='Joy1' fromField='rotation'
 toNode='Navigation' toField='rotation'/>

</jinx>

Code 1 – Example of configuration

As showed in Code 1 each computer configuration is centralized
in a common repository. It facilitates the management of the
system, allowing the composition of very complex systems. Aside
from the fact that the insertion of a new node in the cluster is
simple, all executable and configuration code can be read
remotely. The specification used in Code 1 was created to support
the more common virtual reality infrastructures, and it tries to
follow the format of X3D.

Figure 4 – Connection system

Figure 4 shows a complete cluster system. In SMP architectures,
some processors, P1 and P2, can share the same memory. In this
case the communication is very fast. But in some cases it is
necessary to communicate with other processors in different
computers. In this case it is necessary to send data or commands
across the network. The good point about these resources is that
they work together and simultaneously, but special care should be
taken about mutual exclusion, since some parts of the program
may not be thread safe.

4 Scene graph

The library supports both an OpenGL routine and an X3D code.
The X3D system is based on a scene graph and it should be
controlled in a smart way. Because of the architecture of C++, it is
very simple to simulate each X3D node as an object. The X3D
system has some non-linear links. It means that one node connects
with another one in a different part of the tree. To solve this, a
STL [Breymann 1998] solution was used to create a map that
connects the nodes in any order. It also helps the wand interface,
the collision between the wand bean and the object is calculated
using a ray tracing algorithm that gets the X3D nodes position
very fast, making an accurate localization possible.

A XML parser is necessary to parse an X3D file. In this project
we use the public parser Xerces[Apache]. The X3D structure has
some points that should be carefully managed, like the waste of
memory. Some file lines in an X3D object could have billions of
points, represented as floating point numbers. In this case a great
quantity of memory is necessary, and this should be dynamically
allocated and freed.

5 Modularity

The good point about commodity clusters is that the price is low
because there are lots of commodity device parts to build it in the
market. But it creates a large quantity of devices with different
protocols. Therefore, it is important to think about future releases
and lack of support. In a modular system, new modules could be
added so that the new devices can work. In Figure 5, you can see
some of the modules already developed.

Figure 5 – Library modularity

The main research for network communication is the Glass
library. It is the new version of DiceLib [Gnecco et al. 2001]. It
has many features for network communication that are optimized
for graphical clusters.

6 Interaction and navigation

There are two control possibilities in a virtual environment: the
navigation system and the interaction system. The navigation
allows the user to walk, fly or execute other movements inside a
virtual world like to move to any viewpoint and to get closer or
farther from somewhere. Another possibility is the interaction
with the world. This is accomplished with a wand that lets the
user point at something and changes some parameter, like the
position, or even the color or the shape of an object.

The traditional input devices are the mouse and the keyboard, but
these two are not ideal for virtual environments. Usually the
mouse works only in 2D and the keyboard is not easy to carry
around in a virtual environment like a CAVE or Power Wall. But
for simulation environments in a single screen it is strongly
recommended, and in this case it should be supported. As many
displays are supported, each one has to support a keyboard and a
mouse, and has to read and send information to the master process
so that the other drawing nodes are informed.

The positional electromagnetic trackers are the most popular input
devices for immersive environments. There are wired and wireless
models, but the wire usually is not a problem for small motion.
The tracker could deliver 6DOF, it is possible to locate the
position and the orientation the user’s head to change his/her
viewpoint or to change the wand position to detect and select a
virtual object. It is just important to remember that the viewpoint
can be changed by any movement in the virtual environment and
also using the tracking system. But these devices do not fit very
well for simulation systems in small areas. In this case the use of a
space ball is a better idea. It fits in the same space of a mouse, and
it allows the same 6DOF of the tracker.

These devices are usually connected by a RS232 or USB
connector, and sometimes these devices are not attached in the
simulation computers. In this case it is possible to connect this
device in a specific computer and send the information by a
network stream, using a protocol in XML specified by the library.

7 Development of an application

One of our first approaches to create 3D content was to use a
conversion tool that generates an OpenGL code from some 3D
format, but very soon we concluded that it was not a good way to
solve the application data conversion. Then we decided to read
directly the 3D file. As VRML [VRML] is becoming obsolete for
the technologies available today, a new programming platform
that is promising is the X3D [X3D]. It is a powerful system,
platform independent and open. It is quite possible that many
companies start to use X3D for a unified 3D format. There are
some missing structures that could be important in this format, but
probably they will appear soon. The XML parser is used to read
the X3D files. OpenGL is used to render the X3D objects, and the
entire scene graph is implemented, following the structure of the
X3D model. This X3D file usually stays in a web site, and could
be accessed anywhere.

To write an application is quite simple. It is necessary to instance
the Engine class, and define the configuration file. Finally you
specify an X3D file or an OpenGL routine.

#include "engine.h"

int main(int argc, char* argv[]) {

 Engine* engine = new Engine(&argc,argv);

 engine->Config("http://foo/render.xml");

 engine->X3D("http://foo/exemplo.x3d");
 //engine->OpenGL(&myDrawGLScene);

 engine->run();

 delete engine;
 return(0);

}

Code 2 – Example of program

In the Code 2 figure, you can see that the development of a simple
application is very easy. Actually, you can just create an interface
for this application and have a program that reads X3D files and
displays it in your virtual environment. In the case of using X3D,
the program first unpacks the file in a scene graph tree, and starts
to render it in each necessary node.

7.1 Results

Here, there are a few images produced by the system. Some of
them are in a CAVE and others are snapshots of screen images.

Figure 6 – Demo application in the CAVE and Monitor Wall

Figure 6 shows a demo application that uses all the features
already implemented. It is possible to see the tracking system
work for the 3D wand. This virtual environment was the first one
created, used to do tests.

Figure 7 – Snapshot of the house model and linear monitor wall

Figure 7 shows a house that was fully modeled using 3D Studio,
converted to VRML and then converted to X3D. This is a real
house, and has many special characteristics. The last image shows
a monitor wall presented at an important conference in Brazil, in
this case was used 4 PC computers, each one driving one monitor.

Figure 8 – The Escher model

Figure 8 shows a simulation in the CAVE of an Escher drawing
[Escher et al. 2000]. This is a famous drawing that makes some
illusions using the perspective feeling. In this application we have
6 PC computers and a SGI computer to produce this simulation.
The tracking system, a flock of birds, is attached at the SGI that
sends a XML stream with the coordinates to the PC master
computers. This computer is responsible to manage all other
computers and synthesize the audio. The remaining 5 computers
are each one responsible to render the image for each wall.

Figure 9 – Snapshot of hang-gliding over Rio de Janeiro

Figure 9 shows a hang-gliding tour over Rio de Janeiro. It is
possible to see many important places, like Corcovado and Sugar
Loaf. This example has some sounds in Maracanã, the biggest
soccer stadium, and Sambódromo, the carnival parade avenue.
Besides the environment plays the song Girls from Ipanema. This
example was created with Alias Wavefront Maya and converted
to VRML/X3D.

8 Conclusions and Future Work

This paper has shown that it is really simple for a user to develop
something in X3D and use it even in a hybrid and heterogeneous
computer cluster environment. Also there is a possibility to
convert an application in OpenGL, for a cluster or a graphical
supercomputer running a virtual reality system. Furthermore it
could be used as a basis for many new researches in different
fields, as it is an open system, and advanced functions can easily
be added to the application.

Many features have yet to be implemented, some of the more
important ones are interactive collaborative work, letting a real
camera get the image of the user and redisplay it in the virtual
world as an avatar, and the option to use Iris Performer or
OpenSG for 3D visualization.

All the system is based in XML, but not all possibilities were
explored. In the future work, the software will support some XML
database system to get and send data to a repository, creating a
great flexibility to access data.

http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Escher%2C M. C./104-3248337-0083967

Another issue is how to integrate the configuration file system,
with the software already developed for clusters, like SIRIUS
[Soares et al. 2002], having uniform management resources.

9 Acknowledgements

The authors wish to thank Hilton Fernandes for his insights into
C++ programming. Paulo Bressan and Marcio Cabral for their
helpful suggestions. The house model was provided by Richard
Ibarra and the Escher model by Leonardo Nomura. We would like
to specially thank Prof. João Antonio Zuffo, for his constant
support and advising. This work was funded by FINEP
Financiadora de Estudos e Projetos SISCOMPRO project grant
01.02.0288.00 and Intel do Brasil.

References

ALLARD, J., GOURANTON, V., LECOINTRE L., AND RAFFIN B.

2002. Getting Started with NetJuggler and SoftGenLock. VR Juggler
tutorial at IEEE Virtual Reality Conference 2002, Orlando, Florida.

APACHE PROJECT, Available at http://xml.apache.org.

BIERBAUM, A., AND CRUZ-NEIRA, C. 2003. ClusterJuggler: A modular
architecture for immersive clustering, VR-Cluster'03-Workshop on
Commodity Clusters for Virtual Reality, IEEE Virtual Reality
Conference 2003, March 22th-26th, Los Angeles.

BIERBAUM, A., JUST, C., HARTLING, P., MEINERT, K., BAKER, A., AND
CRUZ-NEIRA, C. 2001. VR Juggler: A Virtual Platform for Virtual
Reality Application Development, IEEE Virtual Reality Conference
2001, Yokohama, Japan.

BREYMANN, U. 1998. Designing Components with the C++ STL. Addison
Wesley Longman.

CHEN, H., WALLACE, G., GUPTA, A., LI, K., FUNKHOUSER, T., AND COOK,
P. 2002. Experiences with Scalability of Display Walls, Seventh Annual
Immersive Projection Technology Symposium.

CRUZ-NEIRA, C., SANDIN, D. J., AND DEFANTI T. A. 1993. Surround-
screen projection-based virtual reality: The design and Implementation
of the CAVE, ACM SIGGRAPH 93, Anaheim.

ESCHER, M. C., LOCHER, J. L., AND VELDHUYSEN, W. F. 2000. The Magic
of M. C. Escher, Harry N Abrams.

FERNANDES, K. J., RAJA, V., AND EYRE, J. 2003. Cybersphere: The Fully
Immersive Spherical Projection System, Communications of the ACM,
Vol. 46, No. 9.

FMOD music & sound effects system, Available at http://www.fmod.org.

GNECCO, B., BRESSAN, P., LOPES, R., AND ZUFFO M. 2001. DICElib: A
Real Time Synchronization Libray for Multi-Projection Virtual Reality
Distributed Environments, Proceedings of 4th SBC Symposium on
Virtual Reality, 338-343.

HINKENJANN, A., BUES, M., ORLY, T., AND SCHUPP, S. 2002. Mixed-
Mode Parallel Real-Time Rendering on Commodity Hardware, In
proceedings of 5th Symposium on Virtual Reality, Fortaleza, Brazil.

ISAKOVIC, K., DUDZIAK, T., AND KÖCHY, K. 2002. X-Rooms: A PC-
based immersive visualization environment, Proceeding of the seventh
international conference on 3D Web technology, 173-177

OPENSG Kickstart Tutorial, Symposium Concepts and Components of
Software Frameworks for Interactive 3D Graphics Available at
http://www.opensg.org/.

PACHECO, P. S. 1997. Parallel Programming with MPI. Morgan
Kaufmann Publishers, San Francisco - California, USA.

SCHAEFFER, B., AND GOUDESEUNE, C. 2003. Syzygy: native PC Cluster
VR, Proceedings of IEEE Virtual Reality Conference 2003, 15-22.

SOARES, L., CABRAL, M., BRESSAN, P., FERNANDES, H., LOPES, R., AND
ZUFFO, M. 2002. Managing Commodity Computer Cluster Oriented for
Virtual Reality Applications, V Symposium of Virtual Reality, Fortaleza
- Ceara, Brazil.

STOLL, G., ELDRIDGE, M., PATTERSON, D., WEBB, A., BERMAN, S., LEVY,
R., CAYWOOD, C., TAVEIRA, M., HUNT, S., AND HANRAHAN, P. 2001.
Lightning-2: a high-performance display subsystem for PC clusters,
Proceedings of the 28th annual conference on Computer graphics and
interactive techniques, 141–148.

TRAMBEREND, H. 1999. Avocado: A distributed virtual reality framework,
Proceedings of IEEE Virtual Reality Conference 99, Texas, , 14-21.

VRML ISO/IEC 14772-1:1997 AND ISO/IEC 14772-2:2002. Information
technology -- Computer graphics and image processing -- The Virtual
Reality Modeling Language, Available at http://www.web3d.org.

X3D ISO/IEC FCD 19775:200X, Information technology -- Computer
graphics and image processing -- Extensible 3D (X3D), Available at
http://www.web3d.org.

XJ3D, Available at http://www.xj3d.org/.

ZUFFO, M., SOARES, L., BRESSAN, P., AND PAIVA, M. 2002. Commodity
Clusters for Immersive Environments, course on V Symposium of
Virtual Reality, Fortaleza - Ceara, Brazil.

http://www.vrjuggler.org/pub/vrjuggler-ieeevr2001.pdf
http://www.vrjuggler.org/pub/vrjuggler-ieeevr2001.pdf
http://www.informatik.hs-bremen.de/~brey/stlbe.html
http://www.cs.princeton.edu/omnimedia/papers/ipt-270-print.pdf
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Locher%2C J. L./104-3248337-0083967

	Abstract
	1 Introduction
	2 Background and related work
	3 Communication
	3.1 Synchronization
	3.2 Connection
	3.3 Tasks distribution
	4 Scene graph
	5 Modularity
	6 Interaction and navigation
	7 Development of an application
	8 Conclusions and Future Work
	9 Acknowledgements
	References

